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Chapter A.
Hyperbolic Space

This chapter is devoted to the definition of a Riemannian n-manifold H"
called byperbolic n-space and to the determination of its geometric properties
(isometries, geodesics, curvature, etc.). This space is the local model for the
class of manifolds we shall deal with in the whole book. The results we are
going to prove may be found in several texts (e.g. [Bea], [Co], [Ep2], [Fe], [Fo],
[Greenb2], [Mag], [Mask2], [Thl, ch. 3] and [Wol]) so we shall omit precise
references. The line of the present chapter is partially inspired by [Ep2], though
we shall be dealing with a less general situation. For a wide list of references
about hyperbolic geometry from ancient times to 1980 we address the reader
to [Mi3].

A.1 Models for Hyperbolic Space

Let n be a fixed natural number. In order to avoid trivialities we shall always
assumen > 2. We shall give different models for a real Riemannian n-manifold
denoted by H?”, which we shall call hyperbolic n-space; these models will be
by construction isometrically diffeomorphic to each other. We shall introduce
different symbols for them, and we shall use these symbols in order to empha-
size a concrete representation of the manifold, while the symbol H” will be
used for the abstract manifold. We shall not get involved in categorial defini-
tions: every Riemannian manifold isometrically diffeornorphic to H™ will be
identified with TH™

HYPERBOLOID MODEL. In IR™"! let us consider the standard symmetric
bi-linear form of signature (n,1):

n
(-’ﬂly)(n,n = fo “Yi — T+l " Yntl

i=1
and let us consider the upper fold of the hyperboloid naturally associated to
('l')(nxl):
I, = {:cG]R""'1 {2]2)(n1) = =1, Tng1 >0}

Since I, is the pre-image of a regular value of a differentiable function, it
is a differentiable oriented hypersurface in IR "*?; in particular it is endowed
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" with a differentiable structure of dimension n. F or 2 €I, the tangent space to

w « In in z is given by

Tl = {yGlRmH : (mly>(n,l) . 0} = {‘7"}-L

T Since (2|z)(a,1y = —1, the restriction of (1) (n1y to {z}+ is positive-definite,
© % de it is a scalar product on {z}+. So, a metric is naturally defined on the

tangent space to each point of I,; it is easily verified that this motric is globally
differentiable, and therefore I, is endowed with a Riemannian structure. We
shall denote by II" the manifold I, endowed with this structure.

DisC MODEL.. Let 7 be the restriction to I of the stereographic projection
with respect to (0,...,0,—1) of {fceR™ 2, > 0} onto R™ x {0}. We
omit the last coordinate, so that the rangeof mis R ™;

(Tj g miny '7:11)
() = s = T
It is easily verified that  is a diffeomorphism of I” onto the open Euclidean
unit ball D™ of IR, ™. The manifold D" endowed with the pull-hack metric with
respect to 77! will be denoted by D™, This manifold is canonically oriented
as a domain of IR °.
HALF-SPACE MODEL. Let us consider the differentiable mapping:

i:D" S R™ —?—i&—z —en
Iz + enl]
where e, = (0,...,0,1) and ||. || denotes the Euclidean norm on IR ™. (In Sect.

A.3 we shall introduce the notion of inversion with respect to a sphere: it is
worth remarking early that ; is the inversion with respect to the sphere of
centre —e, and radius V2) It is easily checked that i is a diffromorphism of
D" onto the open half-space II*+ — {z€R":z, > 0}. We shall denote by
II™F this half-space endowed with the pull-back metric with respect to 771,
II™™* is canonically oriented as a domain of R".

PROJECTIVE (OR KLEIN) MODEL. Let p be the restriction to I" of the
canonical projection of IR "*! onto the real projective n-space RIP ™, pis
a diffeomorphism onto an open subset of RIP " (actually, the unit disc in
a suitable affine chart of IRIP ") which can be endowed with the pull-back
metric with respect to p~1, Since we are not going to use this model we do
not introduce a specific symbol for this representation of H",

Figures 1 and 2 illustrate the geometric construction of the first three
models in the 2-dimensional case.
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Fig. A.1. Two-dimensional models of hyperbolic space: the hyperboloid and its
projection onto the disc

Fig. A.2. Two-dimensional models of hyperbolic space: the disc and its inversion
onto the upper half-plane

A.2 Isometries of Hyperbolic Space:
Hyperboloid Model
For a Riemannian manifold M we shall denote by Z(A) the set of all isometric

diffeomorphisms of M onto itself (briefly: isometries of ). .If M is supposod. to
be oriented, we shall denote by Z+(1f) the set of all isometries of A{ preserving
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orientation. Z(M) and Zt(M) are groups with respect to the operation of
composition. In this section we shall determine the groups Z(I" ) and IF(1"),
while the isometries of H™ in the other models will be calculated later.

We shall denote the differential of a mapping f in a point = of M by d, f.
The scalar product defined on the tangent space T, M will be denoted by (.| Sz
and the quadratic form associated to it by ds?. We recall that the condition
that f be an isometry means the following:

(d,f(v)]dzf(w))f(r) = (v[w), VreM, v,weT, M.

The following result is quite standard, but it will be included for completeness
since it is the basis for most of our arguments; we shall use the notion of
geodesic and exponential mapping, and the well-known result about existence
of normal neighborhoods (see e.g. (He]).

Proposition A.2.1. Let M and N be Riemannian manifolds of the same
dimension, assume }{ is connected and let

b1: M = ¢ (M) C N, ¢3: M — ¢o(M)C N

be local isometries onto their range. If for some y€ M we have ¢, (y) = 2(y)
and dyé; = dy; then ¢ = .
The conclusion holds in particular if ¢; and ¢, are isometries of M onto N.

Proof. The set

S = {reM 101(2) = ¢o(z),d . ¢y = dz¢2}

is obviously closed and it contains Y, hence we only have to prove that it is
open. Let z € S; since M and N have the same dimension the ranges of ¢,
and ¢, are open in N; it follows that we can find an open neighborhood V of
é1(z) = ¢2(z) and two open neighborhoods Uy, U, of z such that ¢ :U; -V
is a surjective isometry for i =1,2. Let U C Uy be a normal neighborhood of
rand p: T M O W — U be the corresponding restriction of the exponential

mapping. We set f = (¢2[U2)_1 ° (éllUl); f is an isometry of U; onto U,

f#)=zandd,f =1 1f 7y is a geodesic arc in U starting at = then fovisa
geodesic arc starting at z with tangent vector

(F29)'(0) = d- £(+'(0)) = +(0)

and hence foy = v, which implies fop = p, and finally flU = id. It was
checked that ¢, |U = ¢2lU, so that U C S, and the proposition is proved. 0O

In order to illustrate completely the determination of the isometries of I"
we start with some elementary facts in linear algebra.

Let V be an n-dimensional real vector space and let (.|.}) be a non-
degenerate bi-linear form on V. It is well-known that there exists a basis
{v1,...,90} of V such that
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0 fi#j
(v,'l’l)j)={+1 fi=j5<p
-1 ifi=j>p.
If we set ¢ = n — p the pair (p,q) depends only on {.|.) and it is called the
signature. If GI(V') denotes the linear group on V we set

OV, (1)) = {A€GI(V) : (Az|Ay) = (z|y) Vz,yeV}.

HV=WoW and p: V — W is the associated projection, we shall.cz?,]l
reflection the linear mapping p : v — 2p(v) —v. It is easily veri‘ﬁed t‘hat pisin
O(V,{.|.})) if and only if W' = W+, where 1 dexllotes orthogc-)naht}.' with respect
to {.|.). If this is the case we shall say that p is the reﬂe(Etlon with respect.to
W, or parallel to W+. From now on we shall call reflections only those with
respect to a hyperplane (i.e. parallel to a vector v such that {v]v) # 0).

Proposition A.2.2. O(V,(.].)) is generated by reflections.

Proof. Let us remark first that —I is generated by the n reflections parallel to
the vectors v; of the basis described above.

We carry out the proof by induction on the dimension n. The first s.tep is
obvious. Assume the proposition is true for an integer =, let V have dimen-
sion n + 1, let (..} be a non-degenerate bi-linear form on V, let A belong to
O(V,{(.|.)) and choose v €V such that (v|v) # 0. . ‘ .
We can assume (Av — v|Av — v) # 0: if this is not the case it is easily verified
that (—Av —v] — Av— v} # 0, hence we can replace A by —A; but by the ﬁ-rst
remark if —A is a product of reflections then 4 is too. Let p be the reflection
parallel to Av — v; since

v=%(Av+v)——;—(Av~v) (Av+vjdv—v) =0
then p(v) = Av = (poA)v) =v = (poA)]vL € O(v+, ('I')llevl)' Since
every reflection in v* extends to a reflection in V the induction hypothesis
implies that A is a product of reflections. |

Assume now that V = R"*" and (.|.) is the standard bi-linear form of
signature (n, 1), and let I, be defined as in Sect. A.1. We shall denote-by 0,)
the subgroup of O(IR ", (.|.)) of those mappings that keep I, invariant, and
by SO(I,) the intersection of O(I,) with Sl(n + 1,IR). Let us remark that
O(I.) and SO(I,) are closed subgroups of Gl(n + 1,IR ), and hence they are

naturally endowed with a Lie group structure.
Proposition A.2.3. O(I,) is generated by the reflections it contains.

Proof. Every reflection parallel to a vector » with (v|v) # 0 keeps the WhOI.e
hyperboloid I, U(—1I,) invariant, and it exchanges the two folds if and only if
(vlv) < 0.

Let A€ O(I,), and write it as a product of reflections: 4 = py o...0 py. Let
pi be parallel to a vector z;; if (z;|z;) < 0 we can complete z; to an orthogonal



v “hapter A. Hyperbolic Space

blas.ls {..'i;,wf.|]1),...,1xrn} of R™*!, with the property that (w;|w;) > 0¥ 4. Then
g;;]f gj];jen v —.(0'1.0...00‘,,,), where o; is the reflection parallel to w;. If we
e this substitution for all i's such that (:c,—]:z-,) < 0 we obtain thait‘I

A=H(ro... o Th)

where all the 74’s are reflections and b
elong to O(I,). The mj ign i 1
ously absurd and hence the proposition is proved(. & s e ObuD_

g‘(l;it)).r:'r}?e iCZI?an(i[’g&ox)lslsts of t.he restrictior.ls to I™ of the elements of
ST & SE(IH)_" » 0 particular Z(II") is generated by reflections.
(ir;?oﬁ:(t) ;(Ez )IJ!]Ia’;)da(nd choose arbitrarily z € I"; since d,f is an isometry
i o zlz) = (F(2)f(z)) = ~1itis readily checked that the

. n+1 _ n
A:R™ =Rz gzt o gt AZ +v s Af(z) + d, f(v)

;s ::\.;}zzle;ne.nj1 of dO(}n) A)s the restriction of A to I” is obviously an isometry,

n )=Az, d.f=4A then b it i« . e
7.1 > then by Proposition A.2.1 fj icti

of 4 to I". It follows that - e

(") = { Al : A€O(1,))}.

Since the linear span of I, is R "*1 the mapping

O(n) > 4 4]; ez

1s one-to-one, and hence it is a group isomorphism
The case of orientation reserving i i .
-preserv: 1 i
ueiice of thorpes p Ing 1sometries is a straight-forward conse-
. . D
= Tfll;((::egrg v‘\;e 2aze iI_nalzﬂy mt;rested in hyperbolic Space we prove an analogne
<. 101 two other very import i i 1
cohers and Fa B, ¥ 1mportant Riemannian manifolds: the
T = .
spheli Sv:ﬂl b;;{ilﬁom?d with the standard Euclidean metric, and the unit
sphere ! 'in will be endowed with the restriction of the Euclidean
- ::, its ta.ngent.bundle (the construction is completely analogous to
e < . . . .
e e p_r;eqinteld m Al T{or I®: g-l.)(n,l) 1s substituted by the Enclidean
y 1). In R " reflections with respect to affine hyperplanes

are naturally defined, while in ™ w, i i
seRET T » while in 5™ we shall consider the restrictions of the

The:rem A.2.5. I(§") = {Algn:AcO(n + 1)},
IMR™) ={(z— Az +b AEO(n),bEIR"}‘
Both of these 8TOups are generated by reflections.

i{%oof. The technique is the same
o

as for A.2.4: inclusions O i
T the converse it is checked tha S o and

t for each element of the group on the left
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an element of the group on the right can be found in such a way that the two
coincide up to first order.

The last assertion is obvious in the first case, while in the second we
only have to remark that the translation of a vector b is the product of the
reflections with respect to b~ and 5/2 + bL. ]

A.3 Conformal Geometry

In this section we will be concerned with conformal geometry in IR " and we
shall prove an important theorem due to Liouville (see for instance [Ber]). The
reason for this long parenthesis is that conformal geometry in IR" permits a
complete calculation of the isometries of H" in the disc and half-space model:
we shall prove that every isometry with respect to the hyperbolic structure
in D™ and II™7 is a conformal automorphism with respect to the Euclidean
structure naturally defined by the immersion in IR ", and conversely.

Let A and N be Riemannian manifolds: we shall say a diffeomorphism
f: M — N is conformal if there exists a differentiable positive function o on

M such that
{(de f(v)ld: f(w)) (z) = a(z){v|w0): Yz eEM, vyweT, M

(i.e. f preserves angles but not necessarily lengths). This dcfinition can be
easily generalized to manifolds endowed with a conformal structure, i.e. man-
ifolds in which the angle between two vectors is defined.

The set of conformal diffeomorphisms of M onto N will be denoted by
Conf(M,N), and by Conf(M) in case N = M; remark that Conf(}) is
a group. As usual, the + superscript will mean that orientation (if any) is
preserved.

We introduce now a very important notion for the study of conformal
geometry in IR ™. If 20 €IR™ and & > 0 we shall call inversion with respect to
the sphere M(z¢,a) of centre zg and radius /@ the following mapping:

T — Xy
+ 2.

Trg,a i & @ —— 7
llz — zo|

We shall think of iz, both as a mapping of R™ \ {20} onto itsclf and as
a mapping of IR ™ U {co} onto iself, where R ™ U {co} & S™ is the one-point
compactification of IR ™, and i,, o exchanges 2y and oo. Throughout this sec-
tion S™ will be endowed with its natural conformal structure; remark that
IR™ = S™\ {oo} inherits from S™ its own conformal structure; every open
subset of IR™ will be endowed with the conformal structure induced from
IR ™. Remark that the definition of 1z,, Makes sense also for a < 0, and it
is easily checked that in this case i, is the composition of the inversion
with respect to M(zq, —a) with the symmetry centred at zo. In the following
proposition we shall list a few important properties of inversions. We shall say
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two hyperplanes H; and H; in R" are orthogonal if the lines Hit and Hi
are orthogonal; consequently we shall say that two intersecting spheres are
orthogonal if for any point of their intersection the two tangent hyperplanes
are orthogonal in the above sense; that is, if 2y and z; are the centres of the
spheres, for each point 2 of the intersection (z — zolz — 2,) = 0.

We are not going to say explicitly if an inversion izo,o 15 considered to be
defined on R ™ \ {24} or on 5™, since it will be evident from the context.

Proposition A.3.1. (1) izq,a 0izq,5 is the dilation centred at 7o of ratio /8.
(2) 25,0 is 2 C* involution (of hoth R ™ \ {z0} and §*).
(3) i”'ﬁlﬁ’f(tn!&) = 1d.
(4) 12,0 is a conformal mapping.
(5) Given a,8 > 0 and z, # 2o the following facts are equivalent:
i) M(zy,8) is iry,o-invariant;
i) M{zo, ) is iz, g-invariant;
i) fl21 — zolf? = o 4
iv) M(xy,8) and M(zq, @) are orthogonal spheres.
(6) Let i =i,, ; then
i) H hyperplane, H 3z, = i(H) = H;
ii) H hyperplane, H Z 20 = i(H) sphere, (H) 3 xq;
iii) M sphere, M 3 zy = i(M) hyperplane, (M) F 2,
iv) M sphere, M ¥ 2o = (M) sphere, i(M) ¥ z,;
v) i operates bijectively on the set of all open balls and all open half-spaces
in R™,
Proof. First of all we remark that if T is the translation z — 2 + 24 we have

tz0,0 = Tedg,00T"!, and 0,0 = @ - g1, hence we shall often assume rg = ()
and o« = 1.

ﬁa'/ )
(1) (fo,a 0d0,8)(z) = HTHELT =af7lz.
T
el
(2) By (1) izy,0 is an involution; differentiability is evident.
(3) Obvious,

(4) Dilations and translations are conformal, and hence we refer to 4¢3,
which is conformal at z # 0 since its differential js

dzig(y) = ﬁ - Po(y)

where P, is the reflection parallel to z, i.e. the reflection with respect to the
hyperplane z+. Moreover ip,1 is the standard chart around oo, and hence it is
by definition conformal at 0.

(5)

i) = iii). We assume z, = 0 and o = 1. The intersection of M(zy,B)
with the line IR z; consists of the points (1+ \/B/”r] D21 and hence 75,1 must

|
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exchange them (in fact both the sphere and the line are iy ;-invariant, alr.ld 12
is easily checked that it is impossible that both points are fixed). By direc

calculation

(1 = VB/lz1lDz1 = o1 ((1 + B/ l|z1l)z1) =

z

(1 4+ VB/llza [l

= (1= VB/leall)- A+ VB/lzal) - =l =1 = [laa]* =1+ 5.

ili) = i). As above, ro = 0 and @ = 1. Let € M(z,, ), then

lzai* = 1= B = llz = 21]f* = |2|* ~ 2{zlz1) + [lea[* = 2(zfer1) =1+ [|z|?

and therefore

2
1 2(-’!:[-?1} -
i 2o E - = — -2l 114 8=4.
SIS “ fol? 7 T el T e

ii) < iii) is proved in the very same way. o
iil) & iv). Since o + B < (Va + VB)?, condition iii) implies that the two
spheres intersect. Moreover, if 2 is in the intersection we have

#1 —2zol> =+ 8 & {ler —2|® +zo — 2|* = |lo1 — 20|* &
& —(z1)|z) + (zlx) — (zo]z) = —{(z1]z0) © (21~ 2|19 —2) =0.

(6) Since the properties we are considering are invariant under dilations
and translations, we take i = iq,;.

i) is obvious. , )

ii). Let H = h+ AL with he R™\ {0}. We set ¢ = /2||h”2,'y = /4||h”2.
For z # 0 we have

4|A|

h
2]A|I*

2 &
Bk K

=0« (h—2/h)=0 & zcH.

i(2)eM(e,y) & fi(z) —clf =7 & [

1 (z]h)
[E N E R

Moreover #(co) = 0€ M(c,v), whence i((H) = NI(C’V)', c
iii). Let M = M(c, v). Since 0€ M we have v = ||¢||*>. If we set h = /2”c”2

and H = h+ hl, by ii) we have i(H) = M, and then i(M) = H. .
iv). Let M = M(c,~). Since 0 & M we have ||c||? # . The following holds:

me—eme——dl
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KQEM@W)@lﬂi3—c =y &
RSl = o
® ol - ot =0 e
2 ;
= H‘ W-T B WFH’—? - ”C”:““( =~ TE—E

* M (Yo~ 3 Y-y

Therefore i(M(e, 7)) = i-! (]\/[(c,'y)) =M (c/(”c][2 7y ’Y/(” 2 )2)
and by iii) this sphere cannot contain 0. i

‘ v). H A is either an open ball or an open half-space we have that 84 is
ezt]u.er a lsphere_ or a hyperplane, and by i)-iv) the same holds for i(84). By
(2) #(A) is connected and its boundary is i(8.4), which implies that it is either
a ball or a half-space. O

Now, forn >2 we will deal with the set of all conformal diffeomorphisms

between two domains of IR ™. The technique is completely different for the
case n = 2. and the case n > 3; however, for the particular open sets we are
mterested in, the result is the same for all integers n.

FIRST cASE: n = 2.

_ We begin by recalling (see [Sp] or [DC]) that a connected oricnted Rieman-
nian su..rface M admits a complex structure (given by isothermal coordinates),
and this structure is uniquely determined by the requirement that

f:CoUo M

is a holomorphic chart if and only if it preserves orientation and
2
ds% ) (d: f(w)) = a(z) - uof?

for some function a > 0.

Vi:eUwel

By the fol.lowing proposition conformal geometry in dimension 2 reduces
to a problem in the theory of functions of one complex variable.

Proposition A.3.2. If Af and N are connected oriented Riemannian sur-
faces (naturally endowed with complex structures), the set of all conformal

diffeomorphisms of M onto V is the set of all holomorphisms and all anti-
holomorphisms of M onto M.

Proof. This fact could be easily deduced from the unigqueness of the complex
structure. However, we shall prove it directly: actually, this VEry arghment

PIO €5 ].le umq“eness Of t]le Cﬂmplex Stl uftllre W .hl e exl.S e € C
Vi t - v I t
) ( Tnce 1S It }.l more
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Let f : M — N be conformal. Since the only both holomorphic and
anti-holomorphic functions are the constants, and since holomorphy and anti-
holomorphy are closed conditions, by connectedness it suffices to prove that f
is locally holomorphic or anti-holomorphic, hence we can assume that Al and
N are domains of €. The conformality condition is expressed by

ldf > = - |dz|?
af . of , IP_ .
Ed.+0—zdz = a|dz]
afI* [ 10F Y, of (of A
= (lg +|5§ |dz|* + 2R 3, \33 (dz)*| = afdz|*.

Since 2R [8f/az . (affaz) . ((13)2] 1s not a multiple of |dz|? it must be zero,

whence af/az . (af/af) = 0. It follows that for each point z; we have
af/az(zo) =0or af/af(.:o) = 0 (but not both, as d., f # 0). Then

= (e Ly =0}y fo: Loy o).

Since these two sets are closed and disjoint, one of them must be empty, so
that f is holomorphic or anti-holomorphic in M.
The above calculations show as well that if f : M -+ N is holomorphic or
anti-holomorphic then it is conformal. O
Let us consider the Riemann sphere $? = CIP! naturally identified with
the set € U {oo} (where co = 07!). We define the two classes of mappings of
TP’ onto itself by

homographies : s = =
cz+d
anti — homographies : z ikl
cz+d

where (Z z> varies in GI(2, €).

The following theorem settles the two-dimensional conformal geometry for
the most important domains. We shall identify IR > with €, in such a way that
IR?2, D? and I are open subsets of CIP ' If F'is a set of mappings we denote
by ¢(F) the set {(z — f(z)) : f€ F} and by —F theset {(z — —f(z)): f€F}.

All results we shall need from the theory of one complex variable can be
found e.g. in [La] and [Na].

Theorem A.3.3. The group Conf(S?) consists of all homographies, and
the group Conf(S?) consists of all homographies and anti-homographies. For
M =R? D? I** we have
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Conf* (M) = {f| s : f€Conf*(S?), f(M) = M}
Conf(M) = {f|ﬂ,‘f : f €Conf(S?), f(M) = M}.
In particular:

Conf*(C) = {(z = az +b): a,beC,a # 0}
Conf(€) = Conf*™(C)|J ¢(Conf*(T))

Conf*(D?) = {(z — et?. Iz __; ) ZGEIR,,(IEDz}
— @z

Conf(D?) = Conf*(D?)|J ¢(Cont*(D?))

az+b fa b
Conft(II*+) = {(z e d) : (c d) €Sl(2, R )}
Conf(TI**) = ConfH(II**) Y ( - ¢(Conf™(%1))).

Proof. By Proposition A.3.2 we have to determine the set of holomorphisms
and anti-holomorphisms of these complex surfaces. We shall refer only to liolo-
morphisms; all the details for the case of anti-holomorphisms can be filled in
as an exercise.

We begin with the explicit determination of the holomorphismsin all cases.

I f:C — Cisaholomorphism then f cannot have an essential singularity
at co (otherwise, by Picard’s theorem, it would not be one-to-one); the power
series expansion of f at 0

f(z) = Z an ="

n>0

coincides with the Laurent expansion of f at co, and hence it is finite. It follows
that f is a polynomial, and bijectivity immediately implies that f(z) = az+b
with a # 0.

As for CIP', the set of all homographies is a group of holomorphisms of
CIP'. Conversely, since homographies operate transitively, given a holomor-
phism f we can find a homography ¢ with (¢ f)(c0) = oo; it follows that
(¢ f) is a holomorphism of T, and hence it is a homography, which implies
that f is a homography too.

By Schwarz’s lemma the group of holomorphisms of D? keeping the origin
fixed is given by rotations, and the proof works as above since the described
set is a group of holomorphisms of D? containing rotations and operating
transitively.

The determination of the group Conft(II?+) easily follows from that of
Conf*(D?) via the Cayley transformation z +— (% — 1)/(_' +i) which maps
%+ bi-holomorphically onto D2.

Now, let M e {C,D? TI%*}; we are left to prove that

Conf* (M) = {f| 1 : f€Conft(8%), F(A1) = M}.
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If f is a homography and f(M) = M the restriction of f to A is obvi-
ously a holomorphism of M. As for the converse, it easily follows from the
determination of Conf™ (Af) in the three cases that all its elements extend to
homographies. 0

As for completeness, we recall the usual representation of the group
Conft(D?) (see [Ve]). After defining

1 0
7=(o %)
it 1s checked that

SU(1,1) = {(% g) L, BET, |af? — |8 = 1}

Conf(D?) = {( - %’;) : (‘C‘ Z) eSU(l,l)} = SULLY L.

SU(1,1) = {A€SI(2,C): *AJA = J}

Proposition A.3.4. If we identify CIP' with IR? U {co} then Conf(TIP')
consists of all and only the mappings of the form

z— Ai(z) +v

where A > 0, A€ O(2), i is either the identity or an inversion and v€R?.

Proof. Since the conjugation is an element of O(2) we consider an anti-
homography
) az+b
fizm— e
and we show that f can be written as AA7i + v. If ¢ = 0 this fact is obvious. If

¢ # 0 we have

b |

(be — c'.t.ﬂ’)/c2
T+ dfc

Let (bc— ad)/cz = Au, with A > 0 and |u] = 1 (hence u € O(2)); if we define

+b a
c-+d_z+

t|

&

i to be the inversion with respect to the sphere of centre —d/c and radius 1,
we have

_ = =+ 1
i(2) = —d/c+ __T/cf = —d/c‘l‘ —
z+ d/c‘ 7+ e
and hence 5
az+ 3 a5
e b Aui(z) + Au d/c + Y.
A similar calculation proves that every mapping of the form AA{ + v is a
homography or an anti-homography. a
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The following result could be proved as a corollary of A.3.4, but we shall
prove it directly from A.3.3. In A.3.9 we shall check that a completely analo-
gous statement holds for n > 3 too.

Theorem A.3.5. (1) Conf(D?) consists of all and only the mappings of the
form = — Ai(z), where A € O(2) and ¢ is either the identity or an inversion
with respect to a sphere orthogonal to 8D?.

(2) Conf(II*>) consists of all and only the mappings of the form

IH,\(S ?)i(m)+<g)

where A > 0, u € O(1) = {£1}, ¢ is either the identity or an inversion with
respect to a sphere orthogonal to IR x {0} and be IR .

Proof. (1) By A.3.1 (4) and (5) every mapping of the form Ai belongs to
Conf(D?). As for the converse, we remark that the set of all the mappings of
the required form is a group: hence, by A.3.3, since the conjngation and all
rotations belongs to O(2) we only have to check that for o € D? the function

2 (- a)/(l —&z) can be written as A7. The sphere of centre 1/0 and
squared radius 1/](1,'2 —1is orthogonal to 8D?; let i denote the inversion with

respect to it; we have

b (Gt)

1 1—laf? 1 az
==t = = — .
a a
Z—a« o,
‘—2—:-1(2).

1—-az a

=

(2) By A.3.1 (4) and (6)-1) every mapping of the described form helongs
to Conf(II**). As for the converse, we remark that the set of all the mappings

of the required form is a group: then, by A.3.3, as the mapping z — — % is

expressed by <_01 (1)>’ we only have to check that for (z 2) €Sl(2,IR)

the mapping
az+b
= =
cz+d
can be written in the required form. If ¢ = 0 this is obvious. Otherwise we set

= —(be - ad)/c2 = l/cg > 0 and we consider the inversion i with respect to

the sphere of centre — d/c and radius 1 (which is orthogonal to IR x {0}, since
its centre lies on such a line); it is easily checked that

az+b . d a
csrd MR Fus -4
and the conclusion follows immediately. O
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Remark A.3.6. Since translations, dilations and elements of SO(n) preserve
orientation, while elements of O(n) \ SO(n) and inversions with respect to
spheres reverse orientation, we have the following:
(1) Ai € Conf(D?) belongs to Conft(D?) if and only if

[A€S0(2),i = identity] or [A€O(2)\ SO(2),i = inversion].
(2) («\ (g (1)) i+ (S)) € Conf(II*>*) belongs to Conf*(I12'+) if and only

if [u =", = identity] or [u =-1,i= inversion] .

SECOND CASE: n > 3.

Our aim is to prove an analogue of Theorem A.3.5 for the n-dimensional
ball and half-space. We shall use a much more general result due to Liouville,
whose long proof we are going to present now. It is worth remarking that an
analogue of Liouville’s theorem in dimension two is false: we shall point out
the steps where the assumption n > 3 is essential.

Theorem A.3.7 (Liouville). Every conformal diffcomorphism between two
domains of R ™ has the form

z— AAi(z) +b

where X > 0, A€ O(n),7 is either the identity or an inversion and b€ IR ™.

Proof. If U,V are domainsin IR"™ and f : U — V is a conformal diffeomor-
phism, we shall denote by py € C*°(U, R ) the coefficient of dilation of the
metric, that is the function satisfying

ld: f()I| = ps(=) ||l VeeUvelR™

We define p¢ as 1/,”.

We shall say f is of type (a) if it is expressed as A4 + b with A € O(n),
beIR™, and of type (b) if it is expressed as AAi + b, where A€O(n), be R"®
and ¢ is the inversion with respect to a sphere. The theorem can he re-phrased
as follows: every conformal diffeomorphism f:U — V is either of type (a) or

of type (b).
The proof is a straight-forward corollary of the following partial results:
Step 1.
i) fis of type (a) if and only if pys is constant;
it} f is of type (b) if and only if there exist zo € R ™ and 7€ IR \ {0} such that
pr(z) = nljz —oo*.
Step 2. There exist n,7€R, z€R " such that ps(z) = n|jz|” + (z]z) + 7.
Step 3. I in step 2 it is 77 # 0 then for some zo €IR ™ we have
pi(e) = nllz —zo|*.
Step 4. In step 2 it cannot occur that 7 = 0 and z # 0.
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According to Step 2, we shall say that fis of typeIif # = 0 and z = 0, of
typeIlif n = 0 and z # 0, of type Il if n # 0. By step 1, if f is of tvpe I then
it is of type (a), and steps 3 and 4 can be respectively re-phrased as follows:

~if f is of type III then it is of type (b).

— f cannot be of type IIL.

We turn to the proof of these steps.
Proof of step 1. i) The “only if” part is obvious. As for the “if” part let us
remark that

f=ps-f:U—>psV

is an isometry. If 2o €U we set
6:U—-R" errof(z—T0)+f($0)?

since ¢ is obviously an isometry onto its range, by Proposition A.2.1 ¢ and f
coincide, whence f is of type (a).

ii) The “only if” part follows from the fact that the the coefficient of
dilation of the metric for an inversion : zo,e I @ poOINt 7 is given by O‘/”r . ”2

As for the “if” part we remark that if ps(2) = nljz — 1'.0”2 and ¢ = iz1/y
then foiis an isometry of i(U) onto V with constant dilation coefficient, and
the above argument applies.
Proof of step 2. We set p = ps and pu = ps. If z € U and d2p denotes the
second differential of p in z, we shall prove the following facts:

(1) Zp(u,w) =0if u L w;

(i) d3p(u,w) = n(z){u|w) for some ne C>();

(iif) 7 is a constant function;
Then the conclusion follows from the fact that the general solution of the
differential equation d2p(u,w) = n(u|w) has the form

p(z) = Lllz|® + (alz) + 7 2eR™,7€R.
(1) Let u,v,w be pairwise orthogonal vectors; we shall often use without

mention the fact that they can be taken to be simultaneously non-zero. If we
consider the partial derivative in direction w of the identity

(def(w)|d: f(v)) =0

we obtain
(d2 f(u, w)|d: f(v)) = —(d f(u)|d2 f(v, w))

If we allow u,v, w to vary (with the condition that they keep pairwise orthog-
onal), we obtain that the left hand side is symmetric in the pairs (u,w) and
(v, w), and skew-symmetric in the pair (u,v), which implies that it is identi-
cally zero. Now, let us fix « and w. Since the image under d; f of the subspace
orthogonal to u and w is the subspace orthogonal to d; f(u) and d, f(w), we
deduce from above that for some real functions a and B depending on u and
w
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(lif(u, w) = ae)d, f(u) + B(z)d, f(w).

If we consider the partial derivative in direction w of the identity

lld= fu)l® = p(2)*|lu®

we obtain
(d2 f(u,w)|dz f(w)) = p(z)ds p(w) ful?
f
therefore . dopi()
alz) =
n(z)
and similarly dos(a)
p(u
Blz) = ———=.
(=) u(z)
Since dzp(z) = —ﬁL(zzl we obtain that

p(x)
p(z)d? f(u,w0) + dop(w)d, f(u) + dpp(u)d, f(w) = 0.

This identity holds for all z €UV and u,w € IR ™ with the only condition that
{r|w) = 0. If v is orthogonal to u and w and we take the partial derivative in
direction v we obtain

dzp(v)d2 f(u,w) + p(2)ds f(u,w,v) + & p(w,v)d, flu)+
+ dzp(w)d2 f(u,v) + d> p(u, v)d, f(w) + dep(u)ds f(w,v) = 0.

The second, the fourth and the fifth terms are symmetric in the pair (u,v),
and the same holds for the sum of the first and the sixth terms, so that the
third term is symmetric in (u,v) too:

d2p(w,v)d, f(u) = & p(w,u)d, f(v);
but d. f(u) and d, f(v) are mutually orthogonal, whence

Ep(w,u) =0 VeelU w,e€R” s.t. {wlu) =0.

(ii) For fixed z d2p is a symmetric bi-linear form on R ™ By (i), if
{e1,...,en} is the canonical basis of IR *, we have
dipleire;) = ki6;  (ki€R).
Moreover for i # j
0=d%p(e; + ej,e;—ej)=ki—k; = ki=k;

and then d2p must be a multiple of the scalar product. The dependence of the
multiplying constant on z is obviously differentiable.
(iii) If we consider the partial derivative in an arbitrary direction » of the
identity
&2 p(w, ) = n(z){wlu)
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we obtain
B p(w,u,v) = d.n(v){wlu).

Since d2p is symmetzic we have

{den(v)w — dep{w)v|u) =0
which implies that d.n(v)w = d.n(w)v and therefore d;n = 0, t.e. n is 2
constant.
Proof of step 8. It is readily verified that

nliell” + (zlz) + 7 = nllz — 20| + 7'

where zg = —2/27], '=71-7q ||1,‘g||2. We must check that 7/ = 0.

We set g = f~! and we remark that g cannot be of type I (otherwise f
would be of type I too). The set

- {{mGU:pf(:v)zz\}:/\>0}

is a family of spheres centred at zq intersected with U7, while the set

Fr={{yeV i p,v) = A} : X >0}

is a family of spheres or hyperplanes intersected with V, according to the fact
that g is of type III or II. Moreover, by the obvious relation
pal£(x)) = ps(2)™F Vzel,
f maps Fi bijectively onto Fs.
Since f is conformal, if  is an arc in U orthogonal to all the elements of
F1, then fois an arc in V orthogonal to all the elements of F3; such an arc
can be re-parametrized as t — yo + tuz, where

if g is of type III, yo is s.t. pg(y) = 7'lly — vol|> + 7" and ug # 0
if g is of type I, us is s.t. po(y) = (yluz) + 7" and yo € IR ™.

Let « have the form () = z¢ + tuy, |t — fo] < €; then we have
(£or)(?) = yo + $(t)uz,

where yy and u4 are as above and ¢ is a diffeomorphism onto an open interval
in IR. We have

: ' [la |
()] - ||uzl| = oY ()| = ||d nflu e e T
[8()] - uzll =[1(f o 7Y (B = lldyeny fua)] PEO)]
I
] < (0t [las||* + 7')
Now, if we assume by contradiction that 7’ # 0, we can find A€ T \ {0} (real
or purely imaginary) and k€ R \ {0} such that

= $1t) =+
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The image of the interval (g — ¢€,¢o + €) under the transformation

t— (t ’\)/( £+ )
is connected and simply connected and it does not contain 0, so that we can
find a holomorphic determination log of the logarithm function defined on a
neighborhood of it. The function

. t—A
1/;.(t0—e,t0+5)3tr—r2/\log<t+/\>€03

is well-defined and differentiable, and ¥ = &, which implies that for some

kel
t—A
B(t) = = 1og(tH) s,

According to the fact that g is of type III or II, the condition
ps(f(v(1)) - ps(v(1)) =1

can be re-written respectively as

('@ llua® + ") (9t ||* + 7') = 1

(BOlwall® + ") (7t llua | + ) = 1.

Let us remark that it is known by now that one of these relations is true for

t € (to — &,t9 + €). However, by the explicit expression of @, if Q is an open
subset of € containing (tq — ¢€,%p +¢) and the image of Q under the mapping

(+)

to (B- ’\)/t A is connected and simply connected and does not contain 0,

the definition of ¢ can be extended holomorphically to §2, and hence the above
relation holds for ¢ in . In particular we can choose Q in such a way that for
some w € € \ {0} and § > 0 it contains the segment {X + sw : 0 < s < §}.
By the choice of A we have nA?||uy||2 + 7/ = 0, and then relations () can be
re-written for ¢ = A + sw as

7' ¢ + sw)? |[ual|2 + 7Y (2A + ws)qw|us]|? - s =
( n

(B + sw)juz]® + 7") (2 + ws)nw|w ] - s =
But now we have that

hII%) d)(/\ + .sw).s = lin}) ¢()\ + sw)23 =0

and hence both the above relations imply the contradiction 0=1.

Proof of step 4. The argument is completely analogous to the one presented

for step 3, so we shall work out calculations without comments; we assume by
contradiction that # = 0 and z # 0.

pr(a) = () + 7. (t)= o+ tur = (For)t) = o+ d(t)us.

prY(1)) = prlao + tur) = [ +7,
900zl = £ =2 3 = Sl
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flusl|
[zl - (tllua]® + ")

JkeR \ {0} such that ¢(t) = t_ﬁ_' (k' = TI/”ulnz)

= ¢(t)=1=%

= ¢(t) = klog(t + k') +k".

{ (ﬂ'¢(i)2lluzll"' + 7'”) : (t”u1||2 + T') =1 (g type III)
(SOllual? +7") - (Hwa]* +7) =1 (g type II)

(n'd(s — k" Jluz|> +7") - |wa]? -8 =1
- { (()||ual?> +7") - flua)® - s =1

lim ¢(s — k')s = lim ¢(s — k')?s=0 = 0=1. Absurd.
8—0 a—

The proof of Liouville’s theorem is now complete. O

It is quite interesting to remark that the assumption that n > 3 was
used only in the proof of Step 2—(i); however, it can be easily checked that
the assumption cannot be dropped. For instance, on the unit disc D% of €
every one-to-one holomorphic mapping is a conformal diffeomorphism onto its
range; and plenty of holomorphic functions are one-to-one on the dise (e.g. .if
p€ C[z] and p'(0) # 0, if € > 0 is small enough the function z +» plez) is
one-to-one on the disc).

Moreover the Riemann mapping theorem (see [Na]) implies that every
simply connected proper domain of T is conformally equivalent to D?, while
A.3.7 implies that for n > 3 only open balls and open subspaces are con-
formally equivalent to D™. This fact is the first feature of a phenomenon of
rigidity for the case n > 3 we shall discuss in Chapt. C.

In the following two results we shall check that in spite of the differences
between the two cases n = 2 and n > 3, the determination of the groups
Conf(S™), Conf(D™) and Conf(II™*) given for n = 2 in A.3.4 and A.3.5 can
be generalized word-by-word to the case n > 3.

Corollary A.3.8. Conf(S™) consists of all and only the mappings of the
form

z— AAi(z) + b
where A > 0, A€ O(n), i is either the identity or the inversion with respect to

a sphere and be R ™.
I M and N are domains in §™ then

Conf(M,N) = {f|)s : f€Conf(S™), f(M) = N}.

Proof. The mappings of the form AAi + b constitute a group of conformal dif-
feomorphisms operating transitively on S™ and containing the isotropy group
of co (that is, Conf(IR ™)), and therefore this group is Conf(5™).

The second assertion is a straight-forward consequence of A.3.7. O
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Theorem A.3.9. Let n > 2.
(1) Conf(D™) consists of all and only the mappings of the form

z — Ai(z),

where A € O(n) and ¢ is either the identity or an inversion with respect to a
sphere orthogonal to §D".
(2) Conf(II™*) consists of all and only the mappings of the form

z»—»,\(‘g (l))i(r)-i— (g)

where A > 0, A€ O(n —1), i is either the identity or an inversion with respect
to a sphere orthogonal to R"~! x {0} and b€ IR,

Proof. By A.3.5 we only have to consider the case n > 3.

(1) By A.3.1 the set of all the mappings of the required form is a group
of conformal diffeomorphisms of D™. As for the converse, let f € Conf(D™).
Assume first that f = AA + b; since the ball of centre b and radins A\ must
be D7, it follows that 6 = 0 and A = 1, whence f has the required form. If
f = AAi+b, with i = iy, then certainly zo ¢ Dr (otherwise we would have
oo € f(D™) = D™, which is false). Let us consider the inversion j with respect
to the sphere centred at #p with radius /||zo||* — 1 (which is orthogonal to
0D™); then f o j€ Conf(D™) and it has the form, ' A’ +¥', and the conclusion
follows from the first part.

(2) By A.3.1 the set of all the mappings of the required form is a group of
conformal diffeomorphisms of II™*. As for the converse, let f € Conf(II™+).
Assume first that f = A4 + b; since 0 belongs to the boundary of T™¥, the
same must hold for f(0) = b, so the last coordinate of b must be 0. Then
A =AY f —b)eConf(Il™*). If for some j < n the element a,; on the n-th
row and j-th column of A does not vanish, the image under A of the j-th
element e; of the canonical basis of R ™ does not belong to the boundary of
O™*, while e; does, and this is absurd. Since the same argument works for

A™' = 'A, A must have the form , and then we obviously have that

B
0
BeO(n—1) and w = 1, whence f has the required form. Now, if f = AAi+b,
where i is the inversion with respect to a sphere centred at a point zg, since
f(zo) = oo belongs to the boundary of II™*, the same must hold for zg,
i.e. o € R"™! x {0}, and then every sphere centred at zq is orthogonal to
IR"™" x {0}. The conclusion follows from the fact that foi€ Conf(II**) has
the form A A’ + V', D

Remark A.3.10. Everything we said in A.3.6 about conformal diffeomor-
phisms preserving or reversing orientation can be repeated word-by-word in
the general case, so that in particular:
(1) Ai€ Conf(D™) preserves the orientation if and only if

[4€S0O(n),i = id] or [A € SO(n),i # id].
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0 1 0
[A€SO(n —1),i =id] or [A & SO(n — 1), # id).

(2) A (A 0) 1+ (b> € Conf(II™+) preserves the orientation if and only if

We conclude this section with a technical result we shall need in the sequel:

Lemma A.3.11. Let n > 2. If ¢ € Conf(S™) is not the identity and there

exists a submanifold ¥ of S™ of codimension 1 such that ¢ is the identity on

N, then one (and only one) of the following facts is verified:

(a) N is contained in a sphere, and ¢ is the inversion with respect to this
sphere;

(b) N is contained in a hyperplane, and ¢ is the reflection with respect to
this hyperplane.

Proof. By A.3.4 and A.3.8 we have the following possibilities:
(a) ¢ =AA 4+ b;

(b) ¢ = AA7 + b, where ¢ is an inversion.

We consider them separately.

{(a) Let z € N, = # oo; since d,d)lTIN = id it must be A = 1, hence ¢ is
an isometry of R ™. If {vy,...,v,—1} is an orthonormal basis of T, N, we can
complete it with a vector v, to an orthonormal basis of R ™. If d;@(vn) = —va
the reflection with respect to T, N is an isometry of IR™ which coincides up
to first order with ¢ in r, and hence it coincides with ¢; since & is the identity
only on TN, obviously N C T, N. The condition d,¢(v,) = v, would imply
that ¢ is the identity, and this is absurd.

(b) Let ¢ = iz,q. For 2€ N and v€ T, N we have

ol = 16 = =2y Jol] = llz = zolf? = Ao

llz — =l

If we set 8 = Aa we have N C M(zq, 3). Moreover ¢oi,, g is of type (a) and
it is the identity on N; then it must be necessarily the identity, otherwise N
would be contained in a hyperplane too, and this is absurd since the intersec-
tion of a sphere and a hyperplane has co-dimension at least 2. o

A.4 Isometries of Hyperbolic Space:
Disc and Half-space Models

In this section the results of the long parenthesis about conformal geometry
are used for the determination of the groups Z(D™) and Z(TI™+).

Theorem A.4.1. Z(D") = Conf(D"), Z+(D") = Conf™(D"). In particular,
these groups operate transitively on D™.

Proof. We start by proving that the restriction of the stereograplic projection
p: I® — D™ used for the definition of D™ is conformal (I" is endowed with
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the hyperbolic metric and D™ with the Euclidean one). We shall denote by
{.|-Y(n,1) the standard bi-linear symmetric form on R™*, and by (.|.) the
usual scalar product in R ". Since p(z,t) = z/(1 1) we have

ST

—3 L —_——_—
1+t (14+t)%
for (z,t)€l”, (y,s),(z,r) ET(z,»nI" we have

d(z,0P(¥, 8)

(z]z) =7 -1 (z|y) = st (z]z) =Tt
and hence

(e lden(=m) = 4t = g poplhet =g 1) =
_ _{yl?) _ 2rst rs(t? — 1) 1 L )
T +1? (14 1) + a+0° = 1 +1)° ((yl=) r.s) -

(14 1) :

We have proved our assertion.

Let ¢ €Z(D™); since by definition p is an isometry we have
plogopeI(I™) C Conf(I™)
and since p is conformal from ™ to D™ we obtain ¢ € Conf(D"). Inclusion C
is proved,
As for the converse, using A.3.9, we shall prove that all the elements of

O(n) and all the inversions with respect to spheres orthogonal to D" belong
to Z(D™). The first fact is easy: if A€ O(n), then

(‘3 2)50(1,,):1(]1") 5 (fé ‘1)) op~l= A,

For the second fact we remark that p~! is expressed by

..1‘:',_’ 1 2I I
P TR N1+ 202 )

if (y,t)€R™" and ((y,1)|(y,1))(n1) = 1 the set

N ={zeD": (p~(2)|(y,t)}(n1) = 0}

is given by the equation

2(zly) = @+ =) VIlyl? - 1
t.e., if we set w = y/ WE=1

2Azlw) =1+ lz]* & [z -w|®=[lw]* -1




24 Chapter A. Hyperholic Space

and hence N is the intersection of D™ with the sphere S,. of centre w and
radius +/||w||?> — 1, which is orthogonal to 8D™.

If $ € Z(II™) is the reflection parallel to (y,?), then po ¢ o p~! is a conformal
diffeomorphism of D" different from the identity and such that it is the identity
on N; by A.3.5 and A.3.9 it extends to a conformal diffcomorphism of S";
it follows from A.3.11 that podop™! is the inversion with respect to S,
and hence the latter belongs to Z{D"). For the conclusion we only have to
remark that if w ¢ D" it is always possible to find (y,#) € R"*! such that
(v, (@, D) (n,1y =1 and w = Y/;.

The case of orientation-preserving isometries is now straight-forward. O

Theorem A.4.2. Z(II™*) = Conf(II™1),

IT(M™*t) = Conf*(II™F).
Proof. As we remarked in Scct. A.1, the diffcomorphism ¢ : D" — II™* used
for the definition of the hyperbolic structure on II™*F is the inversion with

respect to the sphere of centre (0, ...,0,~1) and radius /2, so it is conformal,
and the conclusion follows immediately from A.4.1. m]

Using A.4.1 and A.4.2 the hyperbolic metrics on D" and II™% can be
explicitly computed. Since D™ and T[™'* are open subsects of R ", their tangent
bundles are canonically identified with D" x IR ® and II™+ x IR ” respectively.

Theorem A.4.3. For z € D", (y,¢) € I™F and v € R ™ the metrics are

explicitly given by
5 2
a520) = (1= ) o
1—|l=)i?
2

v
dst o(0) = L2

Proof. The differential of the mapping p: I® — D™ at the point (0,...,0,1) is
half the identity on R™ x {0} = T(o,II", and the restriction of {.|.}(,.1) to
R ™ x {0} is the standard scalar product, so that

ds?(v) = 4llo]|”.

For z € D" the inversion with respect to the sphere orthogonal to dID" of
centre z/l:c 2 is an isometry of D” mapping 0 in z, and its differential in 0 is

(1~||2]|?) times an orthogonal operator (compare A.3.1 (4)), and this implies

that
2 2
ds2(v) = (——) ol
1= [P

Similarly, the differential of the inversion i : D® — II™* at the point 0 is
twice an orthogonal operator, so that

ds?o,l)(“) = ””“2
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Since horizontal translations are isometries we only have to remark that the
differential in (0,1) of the dilation of coefficient ¢ > 0 is ¢ times the identity,
and hence

llv]l?

dst, o(v) = 153

O

Corollary A.4.4. At any point of D™ and HI™* the hyperbolic metric is a
positive mutiple of the Euclidean one.

Remark A.4.5. By A.4.4 the notion of conformal diffeomorphism on D™
and ™7 is the same if we consider the Euclidean metric and the hyperbolic
one. Using A.4.1 and A .4.2, this implies that all conformal diffeomorphisms of
D™ and II™* with respect to the hyperbolic metric are isometries. This fact
does not depend on the concrete representation of H" (only the hyperbolic
metric is used), so that we have the following proposition: ¢ sufficient condition
for a diffeomorphism of H™ to preserve lengths is that it preserves angles
(the converse being true for all Riemannian manifolds). We can interprete
heuristically this fact in the following way: a unit of measure is tnirinsically
defined on H™, and it cannot be changed. We shall prove other facts explaining
this assertion.

A.5 Geodesics, Hyperbolic Subspaces
and Miscellaneous Facts

We start with the hyperboloid model.

Proposition A.5.1. If z€I”, ye T I, (yly)(a,1) = 1 the geodesic starting
at z with velocity y is given by

IR 5t cosh(t) - z + sinh(?) - y.

In particular as a set it is given by the intersection of I™ with the linear
subspace of IR "*? generated by z an y.

Proof. Let W be the plane generated by z and y, and let w be the maximal
geodesic starting at z with velocity y; we shall confuse w with its support.
Let ¢ € O(1,) be defined by ¢lwr =1id and ¢|I-V‘L = —id. Since ¢(2) = 2 and
d:¢(y) = y, w is ¢-invariant, and therefore w C W NI™. Moreover it is easily
checked that the mapping

IR >t cosh(t) -z + sinh(t) - y

gives a parametrization of W N I" with velocity of length identically 1, and
therefore it coincides with w. O

By the above result every geodesic in H" is defined on the whole real line,
and therefore the Hopf-Rinow theorem (see [He]) yvields the following:
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Corollary A.5.2. H"is a complete Riemannian manifold.
An easy argument proves the following further consequence of A.5.1:

Corollary A.5.3. There exists one and only one geodesic line passing
through any two different points of H™

Asin A.2.5 we record an analogy between H™ and S™. We omit the proof
since it works just like the one presented above for A.5.1.

Proposition A.5.4. If z€ 5™, ye T, 5, (yly) =1 the geodesic starting at =
with velocity y is given by

IR 3t — cos(t) -z +sin(t) - y.

In particular as a set it is given by the intersection of 5" with the linear
subspace of IR ! generated by z and y.

We shall say a subset N of H" is a hyperbolic subspace if it contains
the entire geodesic passing through any two of its points. Remark that points
and entire geodesics are hyperbolic subspaces. Proposition A.5.1 imply the
following;:

Corollary A.5.5. N C 1" is a hyperbolic subspace if and only if it is the
intersection of I” with a linear subspace of IR "*!. In particular Liyperbolic
subspaces are submanifolds of I", and hence their dimension is well-defined.

We consider now the other models of H™ Before stating the result we
introduce some terminology.

—~We shall say an affine subspace Y of IR" is vertical if it has the form
Y' + R en, where Y is an affine subspace of R ™! x {0} and e, = (0,...0,1).

—From now on we shall allow a sphere in IR ® to have dimension lower than
n — 1; this is obtained simply by considering the intersection of an (n — 1)-
dimensional sphere with an affine subspace passing through its centre. How-
ever, when speaking of inversion with respect to a sphere, we shall always
mean that the sphere has maximal dimension.

—Let M; and A, be spheres or affine subspaces (or parts of) in IR *, and
let m;, mq be their respective dimensions. We shall say that Af; and M; are
orthogonal if for each = € M; N M, the linear space W = T, Af; N T, M, has
dimension max{0,m; + m2 — n} and the orthogonal complements of W in
T.M; and T; M, are orthogonal to each other.

Proposition A.5.6. (1) N C D™ is a hyperbolic subspace if and only if
it is the intersection of D™ with a linear subspace of IR ™ or with a sphere
orthogonal to D™. In particular geodesics are obtained by parametrization of
diameters of D" and circles orthogonal to D™,

(2) N C ™" is a hyperholic subspace if and only if it is the intersection of
II™* with an affine vertical subspace or with a sphere orthogonal to IR *~! x
{0}. In particular geodesics are obtained by parametrization of vertical lines
and circles orthogonal to IR.""* x {0}.
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Proof. It is easily established that the image under the stereographic projec-
tion p : I* — D™ of a linear subspace W passing throngh (0,...,0,1) is the
intersection of D™ with a linear subspace of IR™. Hence the hyperbolic sub-
spaces of D" passing through 0 are the intersections of D" with the linear
subspaces of R ™. If z ¢ D" the inversion { with respect to the sphere of centre
x/Hsz and squared radius 1/”1' 2= 1 is an isometry of D® and it maps 0 to

z; this implies that it maps the set of all hyperbolic subspaces through 0 onto
the set of all hyperbolic subspaces through 2. Now, if ¥ is a linear subspace
of dimension p of IR ™, we have two possibilities:

(i) z€Y’; in this case i(Y) =Y.

(ii) = ¢ Y. If we consider the subspace X generated by 1" and z, X is i-
invariant and hence {(Y') C X. Since Y is a hyperplane in X, Proposition A.3.1
(6) implies that i(Y") is a sphere in X, hence i(}") is a p-dimensional sphere
in IR ™. Since i is conformal and Y is orthogonal to D", (") is orthogonal
to D™ too.

It is easily verified with the same method that ¢ maps linear subspaces
and spheres orthogonal to D™ passing through z onto linear subspaces, and
hence (1) is proved.

(2) The case of the half-space is a direct consequence of the previous one.
In fact the mapping ¢ : D™ — ™% used for the definition is an inversion, and
hence by the above argument it maps the set of spheres and affine subspaces
onto itself; moreover it preserves orthogonality and the conclusion follows at
once. a

N

Fig. A.3. Geodesics in the two-dimensional disc and half-space

=
>

Corollary A.5.7. A p-dimensional hyperbolic subspace in H™is isometrically
diffeomorphic to HP”.

Proof. We consider the disc model and assume that the hyperbolic subspace
contains 0. By A.5.6 it is a p-dimensional disc, and by A.4.3 it inherits the
same metric as that of D?. 0
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Proposition A.5.6 allows us to compute explicitly the hyperbolic distance
in D™ and II™7. We shall denote by th the hyperbolic tangent function and
by ath its inverse function.

Corollary A.5.8. (1) If z,ye D" we have
llz — vl
d(z,y) = 2ath ( - 2) )
(1= 2(ely) + ll21 - I1y)1*)"/
(2) If (z,t),(y,s) € I™* we have

2 - yl* +(f—s}2>”2.

d((z,1),(y, ) = 2ath (]]x —yl* +(t +3)°

Proof. (1) Let ve R ™, ||v|| = 1. A parametrization of the diameter determined
by v is given by

- -

v:R 3t —th(t/2)-v
and it is a straight-forward computation that
s (¥(1) = 1.
It follows that for z € D™ we have
d(0,z) = 2ath|z|. P
Now, let z,y €D". The inversion ¢ € Z(D™) with respect to the sphere centred

at z/”l'“2 with squared radius 1/””:”2 — 1 can be written explicitly as

feP 2 e

|zl —2||*  lel®

i) = (1 - [lz")
Since i(z) = 0 we have

d(z,y) = d(0,i(y)) = 2athji(y)|

and an easy calculation completes the proof.

(2) We only have to consider the inversion mapping D" isometrically onto
II™™F: explicit computations will be omitted. 0

Remark A.5.9. It is well known (see [Si] or [Ve]) that a differential metric
on D? with respect to which holomorphisms are isometries must be a multiple
of the Poincaré one w(z) = 4/[z|2: by A.3.2 and A.4.1 this is the case for the

hyperbolic metric. Proposition A.4.3 proves that in fact the hyperbolic metric
and the Poincaré one coincide, and hence hyperbolic two-space is nothing
but the Poincaré disc. The above calculation of the hyperbolic distance is
consistent with this fact: it is well-known that the Poincaré distance is given

by
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d(w,z) = 2ath

l~-w?

w—z‘

and our formula is a natural generalization of this one.

We shall discuss now the notion of boundary of hyperbolic space. The
symbol D™ was already used to denote the boundary of D™ in IR", i.e. the
sphere S™"~1, and similarly we can define JII™* as the boundary of I™* in
57, i.e. (IR™7 x {0})U {co}. However a concrete representation of hyperbolic
space is essential for these definitions. We shall prove now that the notion of
boundary is intrinsically defined.

Consider the set & of all geodesic closed half-lines in H™ parametrized by
arc length on [0, 00), and define an equivalence relation R on § in the following
way:

nBy & sup d(11(t), 72()) < oo

Set H" = S/R and H” = H" U 8H". We define a topology on H" in such
a way that H" is open and inherits its own topology, and a neighborhood of
p€ OH" is obtained in the following way: choose 7 in the class of p, and let
z be its starting point, let V be a neighborhood of 4(0) in the unit sphere of
T.H™ and let r > 0; then we set

Uy, V,r) ={m(t) : n€S,m(0) =2, %1 (0)eV,t > r} U
U{(n)r : m€S,m(0) =2z,%(0)eV}.

(We omit the proof that when «, V and r vary, {U(~y, V,r)} satisfies the axioms
of a fundamental system of neighborhoods of p.)

Proposition A.5.10. dH" is homeomorphic to S§7=1 and H" is homeomor-
phic to D". Moreover if we consider the disc model D® of hyperbolic space,
D~ is canonically identified with the closure of D™ as a subset of R ™.

Proof. We shall prove the second fact, which implies the first. Given a goedesic
half-line, since it is an arc of diameter or circle, it determines a unique point
on 8D". Moreover, two geodesic half-lines are in relation R if and only if they
determine the same point on 8D". Then D" is canonically identified with Dm,
and it is straight-forward that this identification is a homeomorphism with
respect to the topology defined above. O

Remark A.5.11. Since the inversion mapping D" onto M™% maps D"
onto (IR ™! x {0}) U {oc}, this set is the natural boundary of TI™*.

Remark also that D™ and (IR"™" x {0}) U {cc} are two models for the
sphere S"~1, and hence in the disc and half-space model we can endow the
boundary of H” with the conformal structure of S71.

We shall refer to the points of JH™ as the points at infinity of H"

If p is a point at infinity in H™ we shall say a geodesic v passes through
p if p is the equivalence class of 7‘[0 o) Of 7‘(—00, op; equivalently, we shall
say that p is an endpoint of v. It is readily verified that all geodesics have
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exactly two endpoints, and moreover given p, € OH™, p # q, there exists one
and only one geodesic having endpoints p and ¢.

Remark that a hyperbolic subspace N can be completed to a closed sub-
manifold of H” by adding to it all the endpoints of the geodesics it contains;
these points will be called the points at infinity of N.

We shall say two geodesics in H" are:

_incident, if they have a common point in H7,
~ asymptotically parallel, if they have one common endpoint,
—ultra-parallel, if they have no intersection in H~

Remark that ultra-parallel geodesics exist even in [H? and this is a deep
difference between the hyperbolic plane and the Euclidean one. We shall dis-
cuss now the essential properties concerning the mutual position of two hy-
perbolic subspaces.

Proposition A.5.12. Let N,Af C H" be hyperbolic subspaces;

(a) if N and M meet in §H" and not in H" then they have exactly one
common point at infinity, and there exists no geodesic line orthogonal to both
N and M;

(b) if N and M do not meet in the whole TH" then there exists a geodesic v
orthogonal to both N and M, and the distance between N and M equals the
length of the arc on v lying through N and M.

Proof. (a) If N and A have two common points p and q at infinity, then both
N and M contain the geodesic line having endpoints p and ¢, and hence they
have non-trivial intersection in H™, which is absurd. In the half-space model
we can assume the common point of N and M is oo, t.e. N and M are affine
vertical subspaces; N = Ny x IR 4, M = M; x R 4. A geodesic orthogonal to
N is a circle centred at a point of Ny; but NN Ay = ¢ and hence no geodesic
can be orthogonal to both N and M.

(b) It is easily checked that N and A have positive distance (otherwise
they would have a common point somewhere: recall that W is compact). Let §
be their distance, and let {a,} and {b,} be sequencesin N and M respectively
such that d(a,,b,) — §. We can assume that these sequences converge in HY,
if one of the limits is a point p at infinity, the condition on the distance implies
that the other limit is p too, and this is absurd since p would be a point at
infinity of both N and M. It follows that a, — a€ H” and b, — be H",
the convergence being with respect to the hyperbolic distance; it follows in
particular that d(a,b) = §. Let 7 denote the geodesic line passing through a
and b; let us remark at once that the arc of y lying through N and M is nothing
but the arc from a to b, and hence it has length 8. Assume for instance that vy is
not orthogonal to N in a. Choose the model D™. Since the hyperbolic distance
is locally approximated by a multiple of the Euclidean distance (A.5.8), then
we can find a point @' on v (near a) such that its distance from N is strictly
less than its distance from a (moreover we can choose a' on the side of M);
this implies that the distance from N to M is strictly less than §, and this is
absurd. ]

o = -

ot
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Proposition A.5.13. (1) All isometries of H"_gc_tend to homeomorphisms
of ", and hence they have some fixed point in H™.
(2) Z(H") and T+(H") operate transitively on 8H™ and on the set

{(z,v) : e B"ve T, H", ds2(v) =1} / C,J

> '5 /C::;" VA Y

where the action is defined by f(z,v) = (f(z),d: f(v))- Voo ;

(3) an element of Z(H") is uniquely determined by its trace on 8H

(4) if M is either the disc model or the half-space model the restriction to the
boundary is an isomorphism of Z(M) onto Conf(9M).

Proof. (1) It is enough to consider the model D, where this fact follows at
once from the explicit determination of the isometries. The second assertion is
an immediate consequence of A.5.10 and Brouwer’s fixed point theorem (see
[Mi2] or [Greenbl]).

(2) We consider the disc model again, where the first fact is obvious. As
for the second, we only need to remark that I+(D™) operates transitively on
D" and SO(n) operates transitively on Snt,

(3) Once again we consider the disc model, where this fact is obvious.

(4) By A4.1 and A.4.2 we have to check that for N € {D™, I} the
restriction to the boundary is an isomorphism of Conf(XN) onto Conf(dN),
and this is a straight-forward corollary of the explicit determination of these
groups (A.3.4, A.3.5, A.3.8 and A.3.9). ]

We shall give now a classification of the isometries of H™ with respect to
their fixed points.

Proposition A.5.14. If 4€ Z(H") the following mutually excluding possi-
bilities are given:

(1) ¢ has some fixed point in H™

(2) ¢ has no fixed points in H", and exactly one fixed point at infinity;

(3) ¢ has no fixed points in H", and exactly two fixed points at infinity.

Proof. We only have to check that if ¢ has no fixed point in H” then it has at
most two fixed points at infinity. In the half-space model, let us assume that
¢ has no fixed point in ™+, and 0,c0 are fixed. Then ¢ can be written as

é: (y,1) — MAy, t).

Since $(0,1) # (0,1) we have A # 1, and this implies that ¢ fixes only 0 and

0. O
According to the above proposition we shall say ¢cI(H) is:

—of elliptic type if (1) occurs;

—of parabolic type if (2) occurs;

—of hyperbolic type if (3) occurs.

Remark A.5.15. If ¢ is an isometry of hyperbolic type then tlere exists one

and only one ¢-invariant geodesic line, whose endpoints are the fixed points
at infinity for ¢.

ot “ P el
1
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Now we shall specialize this classification to the case of dimensions 2 and’
3 for orientation-preserving isometries.

For n = 2 we shall give a geometric and an algebraic classification of
the isometries. Since in IH? the notions of length, angle, and (geodesic) line
are defined, the concepts of bisecting line of an angle and axis of a segment
are naturally defined too. We shall denote by [a,b] the closed segment with
endpoints a and b, and by (a,b,c) the angle between (b, a] and [b,c].

Proposition A.5.16. Let eI (H?)\ {id},let z be a non-fixed point of ¢,
‘and let I; be the bisecting line of the angle (z,4(x), $*(x)) and Iz the axis of
‘the segment [¢(z), ¢*(z)]. Then the following holds:

(1) if I and I, are incident, ¢ is elliptic;

(2) if I; and I, are asymptotically parallel, ¢ is parabolic,

{38) if I and I are ultra-parallel, ¢ is hyperbolic.

Proof. Let us remark first that if ¢ is elliptic then it has only one fixed point,
otherwise it would be the reflection with respect to a geodesic line which is
not in Z+(IH?). Moreover the relative position of I and Iz is invariant under
the action of Z(IH?), so we can choose the fixed point(s) of ¢ ina suitable way.
We carry out the proof by pictures by considering the three possible cases.
(1) ¢ elliptic; we choose 0 € D? as fixed point and we obtain the situation of
Fig. A4. '

(2) ¢ parabolic; we choose co € 1%+ as fixed point and we obtain the situation
of Fig. A.5.

(3) ¢ hyperbolic; we choose 0,00 € M2+ as fixed points and we obtain the

situation of Fig. A.6. ‘
p
élx)
f
$1) {

Fig. A.4. Geometric classification of isometries in dimension two: elliptic case

O

According to A.4.2 and A.3.3 every orientation-preserving isometry of
T2t is represented by a 2 x 2 real matrix with determinant 1, and it is
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x Plz) _\cﬁ’xj

W

Fig. A.5. Geometric classification of isometries in dimension two: parabolic case
A

—_— {Z

~

Fig. A.8. Geometric classification of isometries in dimension two: hyperbolic case

easily checked that two matrices A and B represent the same isometry if and
only if A = +B. We shall denote by tr the trace of a matrix.

Proposition A.5.17. Let ¢ ZH(HI**)\ {id} be represented by a matrix
AeSl(2,R); then
(1) if [tr(4)] < 2, ¢ is elliptic;
(2) if jtr(A)] = 2, ¢ is parabolic;
(3) if [tr(A4)| > 2, ¢ is hyperbolic.

a b
Proof. Let A = (c d
then oo is a fixed point, ¢(z) = a’z + ab and ir(A) = a + l/a. If a = 41 then
b # 0 (otherwise ¢ = id, which is absurd). It follows that

tr(A) = 2 & a=+1 & ¢ parabolic

tr(A) >2 & a#+1 & ¢ hyperbolic.

). We recall that ¢(z) = (az +b)/(cz +d) Ife=0
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If ¢ # 0 we consider the equation
)=z & cx*+(d—a)z~b=0

having discriminant A = (d —a)? + 4bc = tr(A4)? — 4, and the above cases are
easily discussed. O

Now we turn to the three-dimensional case. By A.4.2 and A.5.13, the
restriction of an orientation-preserving isometry of IH® to the boundary is a
conformal diffeomorphism of S2, and conversely every element of Conf™(5?)
can be extended in a unique way to an element of Z+(IH?®). Moreover by A.3.3

Conf*(5?) == 12, C)/{ 0

and hence
I+(IH3) o 51(2, C )/{:EI}

Proposition A.5.18. Let ¢ € Z+(IH?) \ {id} be represented by a matrix
A€eSI(2,T). Then

(1) i tr(A)eR, |tr(A)] < 2, ¢ is elliptic;

(2) if tr(A) = %2, ¢ is parabolic;

(3)if tr(A) ¢ R or tr(A)eIR, |tr(A)] > 2, ¢ is hyperbolic.

Proof. Let A = (‘Z g) , ad — be = 1; since the equation

az+b
cz+d

z

has some solution in € U {co}, then A has a fixed point in € U {oo}. Moreover
we have that:

-S1(2, C) operates transitively on T U {oo};

_tr(B-1AB) = tr(4) VBeSI2,T);

—¢ and ¥~ 1¢1p are of the same type V¢ Z(IH®).

Therefore we can assume A fixes oo, t.e. ¢ = 0, d = 1/a, tr(d) = a+ 1/a,
A(z) = a®z + ab. The isometry ¢ of TI®* (characterized by the fact that it
extends A) is then given by

9(z,1) = (a”z + ab, o).

Asin A.5.17,if a = 1 then b # 0, and therefore we have:

- ¢ elliptic & |a|=1,a # +1,

— ¢ parabolic < a =41,

— ¢ hyperbolic & |a| #1,

and the conclusion follows easily. O
We introduce now a new geometric notion: the horosphere. Given pe SH™

we shall say a closed hypersurface N in H™ is a horosphere centred at p if N
is orthogonal to all geodesic lines with endpoint p.
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Proposition A.5.19. Given pe 9H", H" is the disjoint union of the horo-
spheres centred at p. These horospheres inherit from H" the Riemannian
structure of R ™71,

Proof. The notions we are considering are invariant under isometries, and
henice we shall assume in the half-space model that p = oo. Since geodesics
with endpoint oo are given by vertical lines {0} X IR 4, horospheres centred at
oo are horizontal hyperplanes IR "~ x {to} (and conversely such a hyperplane
is a horosphere centred at oo). The first assertion is proved. As for the second,
using A.4.3, we only have to remark that a positive multiple of the standard
Riemannian metric of IR "~! is equivalent to it. O

h

N

£

Fig. A.7. Horospheres in the three-dimensional disc and half-space models

Remark A.5.20. A horosphere in H™ inherits the Riemannian structure
of R™ Y, but not the metric space structure (that is, the distance of H"
restricted to a horosphere is not Euclidean). The reason is that if we integrate
the metric (in order to obtain the distance) before considering the restriction
to the horosphere, we use geodesics which are not contained in the horosphere,
and hence if we perform the two operations in the opposite order we obtain a
different result.

According to the above characterization a horosphere centred at pe 0H"

divides H™ into two connected regions homeomorphic to n-balls: we shall call
the one meeting OH" in p a horoball centred at p.

The next result provides an alternative proof of the fact that H" is com-
plete (we have already proved this in A.5.2).

Proposition A.5.21. A hyperbolic ball in D" (or II™*) is a Euclidean ball
with different centre and radius, whose closure is compact in D™ (or ™).

Proof. By A.5.8 a ball of radius r centred at 0 in D™ is a Euclidean ball of
centre 0 and radius th("/5) < 1 and hence its closure is compact in D" (recall
that the hyperbolic distance induces the standard topology on D"). Since
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inversions with respect to spheres orthogonal to D™ and elements of O(n)
are homeomorphisms of D® and they map balls into Dballs, the proposition
holds for every ball in D™ Moreover the mapping used for the definition of
II™7 is an inversion too, and the proposition is proved. ]

We give now a description of the “banana” neighborhoods of geodesics
in H™ Given a geodesic v in H™ and ¢ > 0 we consider the closed tubular
e-neighborhood of +:

Ne(y)={zs€®": d(z,7) < e};

if in II™* we have v = {0} x R 4 then N.(v) is invariant under dilations (as
# is) and it is easily checked (by A.5.8) that N.() is the infinite cone based
on a horizontal closed (n — 1)-disc. Now, an immediate argument based on
the properties of inversions proves that the general shape of N.(y) in D" and
™7 is the one described in Fig. A.8.

Fig. A.8. Neighborhoods of geodesics in the three-dimensional disc and half-space

Remark A.5.22. As a conclusion of the section we point out some pecu-
liarities of the the projective model for IH™ we introduced at the beginning.
The first feature is the following: if we canonically identify it with the unit
disc D™ we have that the conformal structure D™ inherits from the hyperbolic
structure is not equivalent to the usual one. Moreover it is not difficult to
check that the geodesic subspaces are given in this model by the intersections
of D™ with the affine subspaces of IR "; we deduce from this for instance that
a geodesic polyhedron in this model is a Euclidean geodesic polyhedron. This
fact is sometimes useful as some arguments applying to Euclidean geodesic
polyhedra generalize to the hyperbolic case (provided they do not involve the
notion of measure of an angle).

——— e ———

A.6 Curvature of Hyperbolic Space 37
A.6 Curvature of Hyperbolic Space

We shall prove that in every point of H™ the sectional curvature of H" with
respect to any section is —1. Before proving this in detail we give a result on
the strict convexity of the distance function, which expresses qualitatively the
fact that JH™ is negatively curved. If z,y € H™ we shall denote by (= + y)/2
the middle point of the geodesic arc joining z and y.

Proposition A.6.1. Let v;,v2 be closed geodesic arcs in H" having in
common at most one endpoint and such that they are not arcs of the same
maximal geodesic; let z,z' €+, and y,y’ € vz with z # z' and y # y' and set

! !

2d(p,q) < d(z,y) +d(z',y"). £

Proof. Since p € v; and ¢ € 42 we cannot have p = ¢, otherwise this point
would be an endpoint of v, whence z = z’ = p, which is absurd. Let § be the
maximal geodesic passing through p and g; if both z and y belong to § then
41 and 7, are arcs of §, which is absurd. Let us assume that = € § (whence
z' ¢ §). Let o be the symmetry with respect to p, i.e. the isometry of H"
characterized by the relation p = (w+ a(w))/2 Vw € H" and similarly let
p be the symmetry with respect to g. Set 7 = poo and z = 7(z) = p(z'),
2" = 7(z') = p(z), r = 7(p) = p(p); then we have

2d(p,q) = d(p,r)
d(y', ") = d{p(y), p(z)) = d(y, )
d(=',2y < d(z',y'") +d(¥',2).

So it is enongh to prove that d(p,r) < d(z',z'), i.e.

d(p,7(p)) < d(z',7(z")).

Let us assume that in the half-space model § = {0} x IR 4; since 7 is the
product of two symmetries with respect to different points of 8, it is easily
calculated that 7 is a dilation of coefficient A # 1. Moreover p has the form
(0,%;) and z' has the form (a,?;) with a ¢ IR™" \ {0}; by A.5.8 it is easily
verified that

d((0,41),(0,Mt1)) < d{(a,t2), (Aa, Mz)). 0

The situation considered in the next result was not included in A.6.1 for
technical reasons and in order to emphasize it with a specific statement. We
shall say three points in H" are non-aligned if each geodesic in H" contains
at most two of them.

Corollary A.6.2. Let z,z',y be non-aligned points of H” and define p as
!
(z+= )/2; then

2d(p,y) < d(z,y) + d(z',y).
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Proof. Set y' = g = y. Since z does not belong to the geodesic passing through
p and g, the above proof works in this case too. a

Remark A.6.3. With the same symbols as in E.6.1 we have in IR " the same
inequality

2d(p, q) < d(z,y) + d(+',y')
but we do have non-trivial cases when equality holds; moreoverin S™ (endowed
with the metric it inherits from IR "*!) we have cases when the opposite
inequality

2d(p,q) > d(z,y) + d(z',y")
holds. These facts express qualitatively the fact that H?, R™ and S™ have
different curvature.

We are now going to prove the assertion about the sectional curvatures
of H™ We recall that the curvature at a point of an oriented Riemannian
surface can be defined in the following equivalent ways (see for instance [Boo],
[Ga-Hu-La), [Ko-No] or [Sp]):

—via the definition of the Levi-Civita connection and the Riemann tensor
associated to it; in particular, if  is a domain in IR%, a:  —» R4 is a C™®
function and a differential metric on Q is defined by dsi(v) = a(z)? - ||v|)?,
this procedure yields the following expression of the curvature at a point z:

1
alz)?

where A denotes the Laplace operator.

k) = ——— - (Alog a)(x)

—via the definition of parallel transport and of a function ¢ associating to
each pre-compact domain D with smooth boundary the nnmber

¢(D) =4 (v, Pan(v)),

where Psp(v) denotes the parallel transport along 8D in the positive direction
of a vector v tangent to a point of 9D, and < (v, w) denotes the measure with
sign of the angle between v and w: it is shown that for a suitable function k
on the surface

é(D) = /k(a:)(lm(z)
D

where dm(z) denotes the element of area at z.

The sectional curvature in a point z of a Riemannian manifold A with
respect to a 2-subspace V' C T, M (called a section at r) is defined as the
curvature at z of the oriented Riemannian surface obtained as the image
under the exponential mapping of a suitably small neighborhood of 0 in V.

Lemma A.6.4. The sectional curvature of H" in a point = with respect to
a section V C T; H" is independent of V, z and n.

Proof. Independence of V and z follows at once from the isometry-invariance of
the curvature and from the fact that Z(H™) operates transitively on the pairs

——————
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¢, V. As for the last assertion we only need to recall that by A.5.7 everything
reduces to the case n = 2: in fact the image under the exponential mapping
of a section at any point of H" is a hyperbolic 2-subspace. O

Lemma A.6.5. Let T be a geodesic triangle in IH? with inner angles a, 8,7,
let m(T) denote its measure and let #(T) be defined as above; then

(a) m(T) =7 —(a+ B +7); '

B (T)=a+B+7y—m

Proof. (a) Let us consider the half-space model. We start by computing the
area of a geodesic triangle A having a vertex at co and inner angles a, 3,0.

A
B
o
N Y
;/ \\\ 7:,’ ‘1
i B \.”ﬁ x 1 =
ID

Fig. A.9. Computation of the area of a geodesic triangle in hyperbolic two-space;
the case of a vertex at infinity

We have that m(A) = [, dx dy/yz. Since

A={(zo+rcosd,y):a<I<w-B, y >rsind}

we have that

=B oo d T
m(A):/rsinﬂd-ﬂ —g:/dﬂzw—a—ﬁ.
Yy

a rsin ¥ a

Now, for the general case, we remark that the area of T can be expressed as
the algebraic sum of the areas of three geodesic triangles having a vertex at oo,
and the conclusion follows quite easily by considering the different possibilities.
For instance in the situation of Fig. A.10 we consider the triangles:

A with vertices z,y, 00 and inner angles ay, f1,0;
A, with vertices z, z, 0o and inner angles a3, 71, 0;
Aj with vertices y, z, 0o and inner angles 2,72, 0;

as suggested in Fig. A.11.



40 Chapter A. Hyperbolic Space

£ <

v
v

Fig. A.11. Computation of the area of
a geodesic triangle in hyperbolic two-
space; how to divide a general triangle

Fig. A.10. Computation of the area of
a geodesic triangle in hyperbolic two-
space; general case

We have the obvious relations

B=7pF+ P

oy =a+a T2=7+tm

and hence

m(T) = m(Ar) + m(As) — m(As) =
=r—a1—B+r-Br—m—-(r—az—m)=

=r—a—F—17.

(b) In M2+ we can assume that one of the sides of T is vertical; the proof
is contained in Fig. A.12.
O

Remark A.6.6. The above result holds also if T' is assumed to be a geodesic
triangle in IHZ, i.e. the vertices are allowed to be points at infinity. (The proof
works just as above.) In particular, the area of any geodesic triangle having
all vertices at infinity is #. We shall use this fact while discussing the rigidity
theorem (Sect. C.2).

Theorem A.6.7. All sectional curvatures of H” are —1.%

Proof. We present two proofs, according to the two possible definitions of the
sectional curvature given above. In both cases, recalling A.6.3, we consider
only n = 2.

-D? is the Riemannian surface associated to the function « : D? - R 4,
a(z) = 2/(1 ~ |2y and it easily checked that

I 1
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Fig. A.12. Calculation of the parallel transport along the boundary of a geodesic
triangle in hyperbolic two-space

1
a(0)?

(Aloga)(0) = —1.

—For z € IH? we can consider a sequence of geodesic triangles {T,,} such
that z€T, and
lim diam(T,) =0.

n—oo
Then, by A.6.5,
k(z) = lim ¢(Tn)/m(T,,) = 1.
)

Remark A.6.8. Lemma A.6.5 (a) provides another evidence of the fact that
a unit of measure is intrinsically defined in H" (compare A.4.5).

The following determination of the curvature of S™ and R " is easily ob-
tained:

Theorem A.6.9. All sectional curvatures of S™ are 1 and all sectional cur-
vatures of IR ™ are 0.

We conclude this chapter with the construction of a surface in IR 2 having
constant curvature —1 (with respect to the Riemannian metric induced from
IRs). Let us consider the Euclidean plane R® =R, x IR ,; we shall call
tractrix a curve « in the open first quadrant such that the distance between
o(t) and the intersection of the y-axis with the tangent line to a at a(t) is
identically 1. It is quite easily verified that the tractrix exists and is unique
up to change of parameter, and in particular it is the graphic of the function

e e e e = == - —
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1
y(x) = / A/ 1/t2 —1dt z€(0,1).

(The integral can be explicitly computed, but it does not say very much.)

X

Fig. A.13. The tractrix

In R® we shall call pseudo-sphere the surface generated by the rotation
of the tractrix around the y-axis.

Fig. A.14. The pseudo-sphere

The pseudo-spherein a neighborhood of a point (g, y(2:9),0) is the graphic
of the function

(2.5) o VAR =

A.6 Curvature of Hyperbolic Space 43

and a straight-forward application of the general formulae for the curvature

of a graphic yields:

Proposition A.6.10. The curvature of the psendo-sphere is identically —1.
Of course the pseudo-sphere is not a complete Riemannian manifold; the

following result implies that this fact cannot be avoided (see [DC}):

Proposition A.6.11. No complete surface in IR 2 can have strictly negative
curvature everywhere.

=l



