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As we have seen in class, the behaviour of an improper integral
∫∞
a f(x) dx heavily depends

upon what the integrand f(x) does as x tends to ∞ (or −∞ for
∫ b
−∞ f(x) dx). To aid in our

study of this ‘long-term’ behaviour of functions, we introduce two notations: little-o notation
and asymptotic notation.

Note, throughout we assume that all functions take only positive values.

Asymptotic notation

Let f and g be (positive-valued) continuous functions. We say that f and g are asymptotic
(writing f ∼ g) if

lim
x→+∞

f(x)

g(x)
= 1.

Intuitively, this limit being 1 tells us that in the battle for the product f(x)· 1
g(x) , neither side

wins: as x gets large, the value of g(x) tends to something that perfectly cancels the value that
f tends to. For comparison, think about what happens to the following quotients as x→ +∞:

x2 + 1

x
,

2

ex
,

2x + 1

3x + 19
,

14x + 3

2x + 11
.

(Respectively, these tend to +∞, 0, 2
3 and 7: either the numerator or denominator ‘wins’

and drags the limit to be bigger or smaller than 1). When f ∼ g, we think of f and g as growing
at the same rate as each other.

Little-o notation

Pushing the idea of functions being asymptotic further, we develop ‘little-o’ notation. Again,
let f and g be two positive-valued continuous functions. We say that ‘f is little-o of g’ (writing
f = o(g)) if

lim
x→+∞

f(x)

g(x)
= 0.

In this instance, we see that the g(x) wins the battle in the long run, and outpaces the
rate at which f is growing, to drag the value of the quotient down to 0 in the limit. Thus, if
f = o(g), we think of g as having a much faster rate of growth than f .

Examples of growth rates

All of our favorite functions fit into a hierarchy of growth. Let c be a constant function, logb
be the logarithm function base b, a(x) = xr for some real r > 0, and expb be the exponential
function base b. Then, we can check, that:

• c = o(logb),
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• logb = o(a),

• a = o(expb).

The moral here is that of these four types of functions, as x → +∞, constant functions
grow the slowest, being out-paced by logarithms, which are out-paced by powers of x, which
are out-paced by exponentials.

The algebra of little-o

The power of little-o and asymptotic notation arises when we combine the two. For instance,
the following asymptotic identities hold:

1. If f = o(g) and b and c are constants, then

b · g + c · f ∼ b · g

(i.e. g grows so much more quickly than f that adding c ·f has no effect on the asymptotic
value of b · g).

2. If f1 ∼ g1 and f2 ∼ g2, then

f1
f2
∼ g1

g2

and
f1 · g1 ∼ f2 · g2 .

3. If f ∼ g and n a fixed real number, then

fn ∼ gn .

4. For a constant c, if f = o(g), then

f = o(c · g)

and
c · f = o(g) .

5. If g1 ∼ g2 and f = o(g1), then

f = o(g2) .

These rules allow us to determine the asymptotic behavior of complicated looking functions
by breaking them up into pieces that we understand better. For example, consider the quotient

f(x) =

√
6x7 − 5x− 1 + ln(x)

x5 + sin(2x)
.

We will find easier to analyze functions, one asymptotic with the numerator of f(x) and one
asymptotic with the denominator, and use Rule (2) to replace the quotient f(x) with a simpler
one.
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First, the numerator. Since the leading term of 6x7− 5x− 1 dominates as x grows, we have
that

6x7 − 5x− 1 ∼ 6x7.

Applying Rule (3) with n = 1
2 , we get√

6x7 − 5x− 1 ∼
√

6x7 =
√

6x
7
2 .

Rule (5) thus gives us that ln(x) is little-o of both
√

6x7 − 5x− 1 and
√

6x
7
2 . Applying Rule

(1) gives that the numerator of f(x) is asymptotic with
√

6x
7
2 .

Similarly, since sin(2x) is bounded in value, sin(2x) = o(x5), and so the denominator is
asymptotic with x5 by Rule (1). Finally, by Rule (2), we see that f(x) is asymptotic with the
simpler quotient √

6x
7
2

x5
=

√
6

x
3
2

.

Application to improper integrals

Like the comparison integrals we saw in class, we can use asymptotic information to determine
if an improper integral converges or diverges, as follows.

If there exists a constant c such that f ∼ c · g, then the improper integrals of f and g on
some interval [a,+∞] either both converge or both diverge.

For instance, since our example f(x) is the previous section is asymptotic with
√

6x−
3
2 , once

we check that the improper integral of
√

6x−
3
2 on [a,+∞] (for a > 0) converges (easy!), we

know that the improper integral of f(x) also converges.

The selling point!

This method using little-o and ∼ has one major advantage over the method using comparison
integrals that we saw in class: you use it by directly simplifying the integrand f(x) in your
improper integrand (writing ∼ instead of =, of course!). To use comparison integrals, you need
to explore somewhat blindly for an integrand strictly smaller (or larger) than f(x), that you can
integrate more easily. As an example, we saw above using little-o that the improper integral
of the quotient f(x) given on the previous page converges — can you easily find a comparison
integral that tells us this same result?

On the other hand, sometimes we need to resort to a comparison integral. For example, for

g(x) =
sin2(x)

x5
,

the numerator is not asymptotic to anything helpful (since sin2 oscillates between 0 and 1
forever), so to compute an improper integral of g(x), we need to use a comparison integral.
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