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A complex number can be represented by an expression of the form a 1 bi, where a 
and b are real numbers and i is a symbol with the property that i 2 − 21. The complex 
number a 1 bi can also be represented by the ordered pair sa, bd and plotted as a point in 
a plane (called the Argand plane) as in Figure 1. Thus the complex number i − 0 1 1 ? i 
is identified with the point s0, 1d.

The real part of the complex number a 1 bi is the real number a and the imaginary 
part is the real number b. Thus the real part of 4 2 3i is 4 and the imaginary part is 23. 
Two complex numbers a 1 bi and c 1 di are equal if a − c and b − d, that is, their real 
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal 
axis is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting 
their real parts and their imaginary parts:

 sa 1 bid 1 sc 1 did − sa 1 cd 1 sb 1 ddi

 sa 1 bid 2 sc 1 did − sa 2 cd 1 sb 2 ddi

For instance,
s1 2 id 1 s4 1 7id − s1 1 4d 1 s21 1 7di − 5 1 6i

The product of complex numbers is defined so that the usual commutative and distribu-
tive laws hold:

 sa 1 bidsc 1 did − asc 1 did 1 sbidsc 1 did

 − ac 1 adi 1 bci 1 bdi 2

Since i 2 − 21, this becomes

sa 1 bidsc 1 did − sac 2 bdd 1 sad 1 bcdi

EXAMPLE 1

 s21 1 3ids2 2 5id − s21ds2 2 5id 1 3is2 2 5id

  − 22 1 5i 1 6i 2 15s21d − 13 1 11i ■

Division of complex numbers is much like rationalizing the denominator of a rational 
expression. For the complex number z − a 1 bi, we define its complex conjugate to be 
z − a 2 bi. To find the quotient of two complex numbers we multiply numerator and 
denominator by the complex conjugate of the denominator.

EXAMPLE 2 Express the number 
21 1 3i
2 1 5i

 in the form a 1 bi.
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FIGURE 1  
Complex numbers as points in the 
Argand plane

 5.  Prove the third law of logarithms. [Hint: Start by showing that 
both sides of the equation have the same derivative.]

 6. Prove the second law of exponents for e x [see (11)].

 7. Prove the third law of exponents for e x [see (11)].

 8. Prove the second law of exponents [see (15)].

 9. Prove the fourth law of exponents [see (15)].

 10. Deduce the following laws of logarithms from (15):
 (a) logbsxyd − logb x 1 logb y

 (b) logbsxyyd − logb x 2 logb y

 (c) logbsx y d − y logb x
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SOLUTION We multiply numerator and denominator by the complex conjugate of 
2 1 5i, namely, 2 2 5i, and we take advantage of the result of Example 1:

 
21 1 3i
2 1 5i

−
21 1 3i
2 1 5i

?
2 2 5i
2 2 5i

−
13 1 11i
22 1 52 −

13
29

1
11
29

 i ■

The geometric interpretation of the complex conjugate is shown in Figure 2: z is the 
reflection of z in the real axis. We list some of the properties of the complex conjugate 
in the following box. The proofs follow from the definition and are requested in Exer-
cise 18.

Properties of Conjugates

z 1 w − z 1 w      zw − z w        z n − z n

The modulus, or absolute value, | z | of a complex number z − a 1 bi is its distance 
from the origin. From Figure 3 we see that if z − a 1 bi, then

 | z | − sa 2 1 b 2  

Notice that

zz − sa 1 bidsa 2 bid − a 2 1 abi 2 abi 2 b 2i 2 − a 2 1 b 2

and so zz − | z |2 

This explains why the division procedure in Example 2 works in general:

z
w

−
zw
ww

−
zw

| w |2

Since i 2 − 21, we can think of i as a square root of 21. But notice that we also have 
s2id2 − i 2 − 21 and so 2i is also a square root of 21. We say that i is the principal 
square root of 21 and write s21 − i. In general, if c is any positive number, we write

 s2c − sc  i

With this convention, the usual derivation and formula for the roots of the quadratic equa- 
tion ax 2 1 bx 1 c − 0 are valid even when b 2 2 4ac , 0:

x −
2b 6 sb 2 2 4ac 

2a

EXAMPLE 3 Find the roots of the equation x 2 1 x 1 1 − 0.

SOLUTION Using the quadratic formula, we have

 x −
21 6 s12 2 4 ? 1

2
−

21 6 s23 

2
−

21 6 s3  i
2

 ■
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FIGURE 3 

FIGURE 2 
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We observe that the solutions of the equation in Example 3 are complex conjugates of 
each other. In general, the solutions of any quadratic equation ax 2 1 bx 1 c − 0 with 
real coefficients a, b, and c are always complex conjugates. (If z is real, z − z, so z is its 
own conjugate.)

We have seen that if we allow complex numbers as solutions, then every quadratic  
equation has a solution. More generally, it is true that every polynomial equation

an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a1 x 1 a0 − 0

of degree at least one has a solution among the complex numbers. This fact is known as  
the Fundamental Theorem of Algebra and was proved by Gauss.

Polar Form
We know that any complex number z − a 1 bi can be considered as a point sa, bd and 
that any such point can be represented by polar coordinates sr, !d with r > 0. In fact,

a − r cos !      b − r sin !

as in Figure 4. Therefore we have

z − a 1 bi − sr cos !d 1 sr sin !di

Thus we can write any complex number z in the form

 z − rscos ! 1 i sin !d 

where r − | z | − sa 2 1 b 2     and    tan ! −
b
a

The angle ! is called the argument of z and we write ! − argszd. Note that argszd is not 
unique; any two arguments of z differ by an integer multiple of 2".

EXAMPLE 4 Write the following numbers in polar form.

(a) z − 1 1 i (b) w − s3 2 i

SOLUTION

(a) We have r − | z | − s12 1 12 − s2  and tan ! − 1, so we can take ! − "y4. 
Therefore the polar form is

z − s2  Scos 
"

4
1 i sin 

"

4 D
(b) Here we have r − | w | − s3 1 1 − 2 and tan ! − 21ys3 . Since w lies in the 
fourth quadrant, we take ! − 2"y6 and

w − 2FcosS2
"

6 D 1 i sinS2
"

6 DG
The numbers z and w are shown in Figure 5. ■

Re

Im

0

a+bi

b
¨

r

aa

FIGURE 4

Re

Im

0

œ„3-i
2

1+i
œ„2

π
4

_π
6

FIGURE 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A60 APPENDIX H  Complex Numbers

The polar form of complex numbers gives insight into multiplication and division. Let

z1 − r1scos !1 1 i sin !1d      z2 − r2scos !2 1 i sin !2 d

be two complex numbers written in polar form. Then

 z1z2 − r1r2scos !1 1 i sin !1dscos !2 1 i sin !2 d

 − r1r2fscos !1 cos !2 2 sin !1 sin !2 d 1 issin !1 cos !2 1 cos !1 sin !2 dg

Therefore, using the addition formulas for cosine and sine, we have

1   z1z2 − r1r2fcoss!1 1 !2 d 1 i sins!1 1 !2 dg�

This formula says that to multiply two complex numbers we multiply the moduli and add 
the arguments. (See Figure 6.)

A similar argument using the subtraction formulas for sine and cosine shows that to 
divide two complex numbers we divide the moduli and subtract the arguments.

 
z1

z2
−

r1

r2
 fcoss!1 2 !2 d 1 i sins!1 2 !2 dg� � � � z2 ± 0�

In particular, taking z1 − 1 and z2 − z (and therefore !1 − 0 and ! 2 − !), we have the  
following, which is illustrated in Figure 7.

 If� � z − rscos ! 1 i sin !d,� � then� �
1
z

−
1
r

 scos ! 2 i sin !d.�

EXAMPLE 5 Find the product of the complex numbers 1 1 i and s3 2 i in polar 
form.

SOLUTION From Example 4 we have

 1 1 i − s2  Scos 
"

4
1 i sin 

"

4 D
and  s3 2 i − 2FcosS2

"

6 D 1 i sinS2
"

6 DG
So, by Equation 1,

 s1 1 idss3 2 id − 2s2  FcosS"

4
2

"

6 D 1 i sinS"

4
2

"

6 DG
 − 2s2  Scos 

"

12
1 i sin 

"

12D
This is illustrated in Figure 8. ■
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Repeated use of Formula 1 shows how to compute powers of a complex number. If

 z − r scos ! 1 i sin !d

then  z2 − r 2scos 2! 1 i sin 2!d

and  z3 − zz2 − r 3scos 3! 1 i sin 3!d

In general, we obtain the following result, which is named after the French mathemati-
cian Abraham De Moivre (1667–1754).

2   De Moivre’s Theorem If z − r scos ! 1 i sin !d and n is a positive integer, 
then

z n − fr scos ! 1 i sin !dgn − r nscos n! 1 i sin n!d

This says that to take the nth power of a complex number we take the nth power of the 
modulus and multiply the argument by n.

EXAMPLE 6 Find (1
2 1 1

2 i)10.

SOLUTION Since 12 1 1
2 i − 1

2 s1 1 id, it follows from Example 4(a) that 12 1 1
2 i has the 

polar form

1
2

1
1
2

 i −
s2 

2
 Scos 

"

4
1 i sin 

"

4 D
So by De Moivre’s Theorem,

S 1
2

1
1
2

 iD10

− Ss2 

2 D10Scos 
10"

4
1 i sin 

10"

4 D
  −

25

210  Scos 
5"

2
1 i sin 

5"

2 D −
1
32

 i ■

De Moivre’s Theorem can also be used to find the nth roots of complex numbers. An  
nth root of the complex number z is a complex number w such that

w n − z

Writing these two numbers in trigonometric form as

w − sscos # 1 i sin #d    and    z − r scos ! 1 i sin !d

and using De Moivre’s Theorem, we get

s nscos n# 1 i sin n#d − r scos ! 1 i sin !d

The equality of these two complex numbers shows that

s n − r    or    s − r 1yn

and cos n# − cos !    and    sin n# − sin !
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From the fact that sine and cosine have period 2", it follows that

n# − ! 1 2k"    or    # −
! 1 2k"

n

Thus w − r 1ynFcosS ! 1 2k"

n D 1 i sinS ! 1 2k"

n DG
Since this expression gives a different value of w for k − 0, 1, 2, . . . , n 2 1, we have 
the following.

3   Roots of a Complex Number Let z − r scos ! 1 i sin !d and let n be a posi-
tive integer. Then z has the n distinct nth roots

wk − r 1ynFcosS ! 1 2k"

n D 1 i sinS ! 1 2k"

n DG
where k − 0, 1, 2, . . . , n 2 1.

Notice that each of the nth roots of z has modulus | wk | − r 1yn. Thus all the nth roots of  
z lie on the circle of radius r 1yn in the complex plane. Also, since the argument of each 
suc cessive nth root exceeds the argument of the previous root by 2"yn, we see that the  
nth roots of z are equally spaced on this circle.

EXAMPLE 7 Find the six sixth roots of z − 28 and graph these roots in the complex 
plane.

SOLUTION In trigonometric form, z − 8scos " 1 i sin "d. Applying Equation 3 with 
n − 6, we get

wk − 81y6Scos 
" 1 2k"

6
1 i sin 

" 1 2k"

6 D
We get the six sixth roots of 28 by taking k − 0, 1, 2, 3, 4, 5 in this formula:

 w0 − 81y6Scos 
"

6
1 i sin 

"

6 D − s2  Ss3 

2
1

1
2

 iD
 w1 − 81y6Scos 

"

2
1 i sin 

"

2 D − s2  i

 w2 − 81y6Scos 
5"

6
1 i sin 

5"

6 D − s2  S2
s3 

2
1

1
2

 iD
 w3 − 81y6Scos 

7"

6
1 i sin 

7"

6 D − s2  S2
s3 

2
2

1
2

 iD
 w4 − 81y6Scos 

3"

2
1 i sin 

3"

2 D − 2s2  i

 w5 − 81y6Scos 
11"

6
1 i sin 

11"

6 D − s2  Ss3 

2
2

1
2

 iD
All these points lie on the circle of radius s2  as shown in Figure 9. ■
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FIGURE 9  
The six sixth roots of z − 28
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Complex Exponentials
We also need to give a meaning to the expression e z when z − x 1 iy is a complex num-
ber.  The theory of infinite series as developed in Chapter 11 can be extended to the 
case where the terms are complex numbers. Using the Taylor series for ex (11.10.11) as 
our guide, we define

4   e z − o
`

n−0
 
z n

n!
− 1 1 z 1

z2

2!
1

z3

3!
1 ∙ ∙ ∙�

and it turns out that this complex exponential function has the same properties as the real 
exponential function. In particular, it is true that

5  � e z11z2 − e z1e z2�

If we put z − iy, where y is a real number, in Equation 4, and use the facts that

i 2 − 21,  i 3 − i 2i − 2i,  i 4 − 1,  i 5 − i,  . . .

we get  e iy − 1 1 iy 1
siyd2

2!
1

siyd3

3!
1

siyd4

4!
1

siyd5

5!
1 ∙ ∙ ∙

 − 1 1 iy 2
 y 2

2!
2 i 

 y 3

3!
1

 y 4

4!
1 i 

 y 5

5!
1 ∙ ∙ ∙

 − S1 2
 y 2

2!
1

 y 4

4!
2

 y 6

6!
1 ∙ ∙ ∙D 1 iSy 2

 y 3

3!
1

 y 5

5!
2 ∙ ∙ ∙D

 − cos y 1 i sin y

Here we have used the Taylor series for cos y and sin y (Equations 11.10.16 and 11.10.15). 
The result is a famous formula called Euler’s formula:

6   e iy − cos y 1 i sin y�

Combining Euler’s formula with Equation 5, we get

7  � ex1iy − exe iy − exscos y 1 i sin yd�

EXAMPLE 8 Evaluate:  (a) e i"      (b) e211i"y2

SOLUTION
(a) From Euler’s equation (6) we have

e i" − cos " 1 i sin " − 21 1 is0d − 21

(b) Using Equation 7 we get

 e211i"y2 − e21Scos 
"

2
1 i sin 

"

2 D −
1
e

 f0 1 is1dg −
i
e

 ■

Finally, we note that Euler’s equation provides us with an easier method of proving  
De Moivre’s Theorem:

fr scos ! 1 i sin !dgn − sre i! dn − r ne in! − r nscos n! 1 i sin n!d

We could write the result of  
Example 8(a) as

e i" 1 1 − 0

This equation relates the five most 
famous numbers in all of mathematics: 
0, 1, e, i, and ".
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 32. z − 4ss3 1 i d,  w − 23 2 3i

33–36 Find the indicated power using De Moivre’s Theorem.

 33. s1 1 i d20 34. s1 2 s3 i d5

 35. s2s3 1 2i d5 36. s1 2 i d8

 37–40 Find the indicated roots. Sketch the roots in the complex 
plane.

 37. The eighth roots of 1 38. The fifth roots of 32

 39. The cube roots of i 40. The cube roots of 1 1 i

41–46 Write the number in the form a 1 bi.

 41. e i"y2 42. e 2" i

 43. e i"y3 44. e 2i"

 45. e 21i" 46. e "1i

 47.  Use De Moivre’s Theorem with n − 3 to express cos 3! and 
sin 3! in terms of cos ! and sin !.

 48.  Use Euler’s formula to prove the following formulas for cos x 
and sin x:

cos x −
eix 1 e2ix

2
      sin x −

eix 2 e2ix

2i

 49.  If usxd − f sxd 1 itsxd is a complex-valued function of a real 
variable x and the real and imaginary parts f sxd and tsxd are 
differentiable functions of x, then the derivative of u is defined 
to be u9sxd − f 9sxd 1 it9sxd. Use this together with Equation 7 
to prove that if Fsxd − e rx, then F9sxd − re rx when r − a 1 bi 
is a complex number.

 50.  (a)  If u is a complex-valued function of a real variable, its 
indefinite integral y usxd dx is an antiderivative of u.  
Evaluate

y e s11i dx dx

 (b)  By considering the real and imaginary parts of the integral 
in part (a), evaluate the real integrals

y e x cos x dx    and    y e x sin x dx

 (c)  Compare with the method used in Example 7.1.4.

 1–14 Evaluate the expression and write your answer in the  
form a 1 bi.

 1. s5 2 6i d 1 s3 1 2i d 2. s4 2 1
2 id 2 s9 1 5

2 id
 3. s2 1 5i ds4 2 id 4. s1 2 2i ds8 2 3i d

 5. 12 1 7i 6. 2i (1
2 2 i)

 7. 
1 1 4i
3 1 2i

 8. 
3 1 2i
1 2 4i

 9. 
1

1 1 i
 10. 

3
4 2 3i

 11. i 3  12. i 100

 13. s225  14. s23 s212 

 15–17 Find the complex conjugate and the modulus of the  
number.

 15. 12 2 5i 16. 21 1 2s2 i

 17. 24i

 18. Prove the following properties of complex numbers.
 (a) z 1 w − z 1 w          (b) zw − z w
 (c) z n − z n, where n is a positive integer
 [Hint: Write z − a 1 bi, w − c 1 di.]

19–24 Find all solutions of the equation.

 19. 4x 2 1 9 − 0 20. x 4 − 1

 21. x 2 1 2x 1 5 − 0 22. 2x 2 2 2x 1 1 − 0

 23. z2 1 z 1 2 − 0 24. z2 1 1
2 z 1 1

4 − 0

 25–28 Write the number in polar form with argument between 0 
and 2".

 25. 23 1 3i 26. 1 2 s3 i

 27. 3 1 4i 28. 8i

 29–32 Find polar forms for zw, zyw, and 1yz by first putting z and 
w into polar form.

 29. z − s3 1 i,  w − 1 1 s3 i

 30. z − 4s3 2 4i,  w − 8i

 31. z − 2s3 2 2i,  w − 21 1 i

EXERCISES
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